

Accredited for compliance with ISO/IEC 17025 - Testing.

Accreditation No. 14184.

West Gate Tunnel Project

Ambient Air Quality Monitoring Validated Report

1st February 2018 – 28th February 2018

Report No.: DAT12994

Report issue date: 26th March 2018

Maintenance contract: MC2078

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Customer Details		
Customer	Transurban Limited - Western Distributor Project	
Contact name	Western Distributor Project	
Address	Level 23, Tower One, 722 Collins Street, Docklands, VIC 3008	
Email	westgatetunnelproject@wda.vic.gov.au	
Phone	1800 105 105	

Revision History			
Revision	Report ID	Date	Analyst
0	DAT12994	26/03/18	Diep LAM

Report by: Diep LAM

Approved Signatory: Jon ALEXANDER

Table of Contents

Custome	r Details	
	History	
	Contents	
	gures	
	bles	
	ummary	
	n	
	nitoring and Data Collection	
	ting Details	
	Ionitored Parameters	
	ata Collection Methods	
1.3.1.	NATA Endorsement and Compliance with Standards	13
1.3.2.	Data Acquisition (Continuous Monitoring)	13
1.3.3.	Sampling and analysis for BTEX	13
1.4. D	ata Validation and Reporting	14
1.4.1.	Validation	14
1.4.2.	Reporting	14
2.0 Air C	Quality Standards and Goals	15
3.0 Calik	orations and Maintenance	18
3.1. U	nits and Uncertainties	18
3.2. Auto	omatic calibration checks	19
3.3. Maiı	ntenance	19

3.3.	1. Maintenance notes	19		
3.3.	2. Calibration & Maintenance Summary Tables	19		
4.0	Results	22		
4.1.	Valid Data Capture	22		
4.2.	Air Quality Monthly Summary	23		
4.3.	BTEX Analytical Results Summary	25		
4.4.	Graphic Representations	27		
5.0	Valid Data Exception Table	37		
6.0	Report Summary	40		
Appen	ndix 1 - Definitions & Abbreviations	41		
Appen	ndix 2 - Explanation of Exception Table	42		
Appen	ndix 3 – BTEX Analytical Results	44		
List c	of Figures			
Figure	1: WGTP Monitoring Station Location	10		
Figure	2: PM ₁₀ 1-day Averages for February 2018	27		
Figure	3: PM _{2.5} 1-day Averages for February 2018	27		
Figure	4: Station 1 PM ₁₀ 1-hour Averages scatter plot for February 2018	28		
Figure 5: Station 1 PM _{2.5} 1-hour Averages scatter plot for February 201828				
Figure 6: Station 2 Monthly Wind Rose for February 2018				
Figure	7: Station 2 PM ₁₀ 1-hour Averages scatter plot for February 2018	29		
Figure 8: Station 2 PM _{2.5} 1-hour Averages scatter plot for February 201830				
Figure	Figure 9: Station 2 Monthly Wind Rose for February 2018			

Figure 10: Station 3 PM ₁₀ 1-hour Averages scatter plot for February 2018	31
Figure 11: Station 3 PM _{2.5} 1-hour Averages scatter plot for February 2018	31
Figure 12: Station 3 Monthly Wind Rose for February 2018	32
Figure 13: Staton 4 PM ₁₀ 1-hour Averages scatter plot for February 2018	32
Figure 14: Station 4 PM _{2.5} 1-hour Averages scatter plot for February 2018	33
Figure 15: Station 4 CO 1-hour Averages scatter plot for February 2018	33
Figure 16: Station 4 NO ₂ 1-hour Averages scatter plot for February 2018	34
Figure 17: Station 4 CO 8-hours rolling Averages for February 2018	34
Figure 18: Station 4 NO ₂ 1-hour Averages for February 2018	35
Figure 19: Station 4 Monthly Wind Rose for February 2018	35
Figure 20: Station 5 PM ₁₀ 1-hour Averages scatter plot for February 2018	36
Figure 21: Station 5 PM _{2.5} 1-hour Averages scatter plot for February 2018	36
Figure 22: Station 5 Monthly Wind Rose for February 2018	37
List of Tables	
Table 1: WGTP network monitoring locations	8
Table 2: Parameters measured at the WGTP monitoring stations	10
Table 3: Methods	11
Table 4: Air Quality Standards for Station 1	15
Table 5: Air Quality Standards and Air Toxic NEPM Goals for Stations 2, 3, 4 and 5	4-
Table Collegies and Hannataineine	
Table 6: Units and Uncertainties	
Table 7: Automatic Span/Zero and Background Check Times	19
Table 8: Station 1 Maintenance Table February 2018	20

Table 9: Station 2 Maintenance Table February 2018	20
Table 10: Station 3 Maintenance Table February 2018	21
Table 11: Station 4 Maintenance Table February 2018	21
Table 12: Station 5 Maintenance Table February 2018	22
Table 13: WGTP network Monthly Data Capture for February 2018	23
Table 14: Station 1 Exceedances recorded for February 2018	23
Table 15: Station 2 Exceedances recorded for February 2018	24
Table 16: Station 3 Exceedances recorded for February 2018	24
Table 17: Station 4 Exceedances recorded for February 2018	24
Table 18: Station 4 readings above Monitoring Investigation Level recorded for February 2018	25
Table 19: Station 5 Exceedances recorded for February 2018	25
Table 20: Station 4 BTEX Analytical Results for February 2018	26
Table 20: Station 1 Valid Data Exception Table	37
Table 21: Station 2 Valid Data Exception Table	38
Table 22: Station 3 Valid Data Exception Table	38
Table 23: Station 4 Valid Data Exception Table	38
Table 24: Station 5 Valid Data Exception Table	39

Executive Summary

Ecotech Pty Ltd is an independent company, contracted by Project Co to undertake continuous ambient air quality monitoring (AAQM) at a network of sites in Yarraville, Victoria, Australia. Monitoring is being conducted to inform environmental compliance requirements of the planned West Gate Tunnel Project.

The West Gate Tunnel Project consists of five AAQM stations. Ecotech commissioned the West Gate Tunnel Project stations as following:

- Station 1 on 19th July 2016.
- Station 2 on 26th August 2016.
- Station 4 on 3rd November 2016. BTEX sampling at Station 4 commenced on 21st November 2016.
- Station 5 on 17th January 2017.
- Station 3 on 25th January 2017.

This report presents the data for February 2018.

- The percentage of valid data capture for most of parameters at West Gate Tunnel Project network was above 85% for the reporting month.
- There was no recorded PM₁₀ readings over the exceedance limits at West Gate Tunnel Project network during the reporting month.

Introduction

Ecotech Pty Ltd was commissioned by Transurban Limited (Principal) to provide monitoring and data reporting for the West Gate Tunnel Project (WGTP) network ambient air quality monitoring stations, located as detailed in Table 1. Ecotech commenced data collection at the Station 1 on the 19th July 2016, at Staton 2 on the 26th August 2016, and at Station 4 on the 3rd November 2016. BTEX sampling at Station 4 commenced on 21st of November 2016. Monitoring commenced at Station 5 and Station 3 on the 17th and 25th of January 2017 respectively.

This report presents the data for February 2018.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

1.0 Monitoring and Data Collection

1.1. Siting Details

The WGTP network consists of five ambient air quality monitoring stations. The station's location and siting details are described below.

Table 1: WGTP network monitoring locations

Site Name	Street Address	Geographical Coordinates	Height Above Sea Level (m)
Station 1	Barbara Beyer Reserve,	Beyer Reserve, 37°48'43.20"S	
Station 1	2 Harris St, Yarraville	144°54'0.00"E	10m
Station 2	51-53 Francis Street,	37°49'15.59"S	12m
Station 2	Yarraville	144°53'38.41"E	12111

Site Name	Street Address	Geographical Coordinates	Height Above Sea Level (m)	
Station 3	Railway Reserve,	37°48'50.40"S	17m	
Stations	Woods St, Yarraville	144°53'27.60"E		
Station 4	Primula Ave, Brooklyn	37°49'27.28"S	23m	
Station 4	Primula Ave, Brooklyn	144°50'45.72"E		
Station 5	Donald McLean	37°49'35.28"S	6m	
	Reserve, Spotswood	144°52'55.25"E		

Siting audits were conducted to assess for compliance with AS/NZS 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

Siting audits performed at WGTP network as follows:

- Station 1 on 31st July 2017.
- Station 2 on 22nd September 2017.
- Station 3 on 4th February 2018.
- Station 4 on 1st November 2017.
- Station 5 on 8th February 2018.

The siting audits of these stations showed general compliance with the guidelines in AS/NZS 3580.1.1:2007. These stations are classified as peak stations according to AS/NZS 3580.1.1:2007. Please see details of any non-compliance in Section 1.3.1.

The meteorological monitoring siting audits were completed at WGTP network as follows:

- Station 1 on 31st July 2017.
- Station 2 on 22nd September 2017.
- Station 3 on 1st February 2018.
- Station 4 on 1st November 2017.
- Station 5 on 2nd February 2018.

Figure 1: WGTP Monitoring Station Locations

1.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at WGTP monitoring stations. Appendix 1 defines any abbreviated parameter names used throughout the report.

Sampling of all parameters is continuous, with the exception of BTEX. BTEX sampling is typically conducted by Ecotech on a one in six-day cycle at Station 4. BTEX samples are collected from 12:30 AM to 11:30 PM on the sampling day.

For meteorological sensors, the elevation given in the table on the next page is the height above ground level at the monitoring station.

Table 2: Parameters measured at the WGTP monitoring stations

Station	Parameter Measured	Instrument and Measurement Technique
1, 2, 3, 4 & 5	PM ₁₀	Rupprecht & Patashnick / Thermo – TEOM (Tapered Element Oscillating Microbalance)
	PM _{2.5}	Met One BAM 1020 – Beta ray attenuation

Station	Parameter Measured	Instrument and Measurement Technique
	Wind Speed (horizontal, elevation 10m)	Vaisala WS425 – ultrasonic
	Wind Direction (elevation 10m)	Vaisala WS425 – ultrasonic
	Benzene, Toluene, Ethyl benzene, Xylene (BTEX)	Collected In Specially-Prepared Canisters And Analysed By Gas Chromatography/Mass Spectrometry (GC/MS)
	NO, NO ₂ , NO _x	Ecotech EC9841 – gas phase chemiluminescence
	СО	Ecotech EC9830 – NDIR gas filter correlation infrared photometry

1.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in sections 1.3.1. and 1.3.3.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method
NO, NO ₂ , NO _x	AS/NZS 3580.5.1- 2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence
СО	AS/NZS 3580.7.1- 2011	Methods for sampling and analysis of ambient air. Method 7.1: Determination of carbon monoxide - direct reading instrumental method
	Ecotech Laboratory Manual	In-house method 6.3 Carbon monoxide by gas filter correlation spectrophotometry

Parameter Measured	Data Collection Methods Used	Description of Method
BTEX (Sampling only)	US EPA TO-15	Method TO-15 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air Second Edition. Compendium Method TO-15 Determination of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analysed By Gas Chromatography/Mass Spectrometry (GC/MS)
	Ecotech Laboratory Manual	In-house method 6.9 Volatile organic compounds in air collected in specially prepared canisters and analysed by gas chromatography/mass spectrometry
PM ₁₀ (TEOM)	AS/NZ 3580.9.8- 2008	Methods for sampling and analysis of ambient air. Method 9.8: Determination of suspended particulate matter - PM_{10} continuous direct mass method using a tapered element oscillating microbalance analyser.
	Ecotech Laboratory Manual	In-house method 7.3- Particulates - PM _{2.5} , PM ₁₀ by TEOM
PM _{2.5} (BAM 1020)	AS/NZS 3580.9.12 - 2013	Methods of sampling and analysis of ambient air. Method 9.12: Determination of suspended particulate matter – PM _{2.5} beta attenuation monitors
	Ecotech Laboratory Manual	In-house method 7.5 – Measurement of PM ₁₀ , PM _{2.5} and TSP using Beta Attenuation Monitor.
Vector Wind Speed (Horizontal)	AS/NZS 3580.14 2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer
Vector Wind Direction	AS/NZS 3580.14 2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer

1.3.1. NATA Endorsement and Compliance with Standards

Unless stated below, parameters are monitored at the WGTP network according to the methods detailed in Table 3 above.

- Siting of all WGTP stations may not fully comply with the guidelines in *AS 3580.14- 2014* "Methods for sampling and analysis of ambient air Meteorological monitoring for ambient air quality monitoring applications guidelines", due to possible air flow disturbances caused by nearby trees. Locating monitoring stations in urban areas often requires compromise due to a lack of clear space areas without obstructions as well as the availability of usable power supplies. Given the location, the site is fit for purpose while not fully compliant.
- AS/NZS 3580.1.1:2007 recommends a minimum distance between inlets and the roof of the supporting structure of 1.0m. However, all WGTP stations have inlets less than 1.0m above the roof. It is not thought this small difference will have any impact on measured concentrations.
- Ecotech's NATA scope of accreditation covers sampling only for BTEX parameters. Analysis
 and canister preparation is conducted by NATA accredited laboratories ALS as outlined in
 1.3.3 below.
- Wind sensor at Station 3 was out of wind tunnel calibration from 18th January 2018. Ecotech will try to arrange the wind tunnel calibration at the next suitable maintenance visit.

1.3.2. Data Acquisition (Continuous Monitoring)

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at each of the monitoring sites. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS loggers on a daily basis (using Airodis™ version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5-minute intervals.

1.3.3. Sampling and analysis for BTEX

BTEX canister sampling was conducted by Ecotech field service technicians. ALS (NATA Accreditation No. 825) provided the canisters and laboratory analysis services according to method US EPA TO-15.

1.4. Data Validation and Reporting

1.4.1. Validation

The Ecotech ERS department performs daily data checks on continuously monitored parameters to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated 5-minute data, while PM_{2.5} is based on validated 1-hour data.

1.4.2. Reporting

The reported data for continuously monitored parameters is in a Microsoft Excel format file named "Monthly Data Report February 2018.xls".

The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Data
- 3. 1 Hour Data
- 4. 1 Day Data
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

Averages are based on a minimum of 75% valid readings within the averaging period. All averages are calculated from the 5-minute data, while PM_{2.5} averages are calculated from 1-hour data.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00am is for the data collected from 1:00am to 2:00am. For the purposes of calculating and reporting 4 and 8-hour averages, the first rolling average in a calendar day ends at 1.00 am, and includes hours from the previous calendar day. One-hour averages are calculated based on a clock hour. One day and one-year averages are calculated based on calendar days.

Wind Data Reporting

Wind speed and wind direction data associated with calm wind conditions are reported in accordance with the requirements of AS 3580.14-2014. Calm wind conditions are defined as wind speeds below the starting threshold of the wind speed / direction sensors. Sensor starting thresholds are given in Table 5 under "Measurement Range".

BTEX Reporting

Results will be provided to Ecotech by the analytical laboratory and summarised within this report. Full analytical results will be included as an Appendix 3 at the end of this report.

2.0 Air Quality Standards and Goals

The air quality standards for pollutants monitored at the WGTP monitoring network are based on

- State Environmental Protection Policy (Ambient Air Quality) Environmental Quality Objectives (SEPP (AAQ) EQO) for Station 1 (Yarraville Gardens), and
- State Environmental Protection Policy (Air Quality Management (AQM)) Schedule B for the remaining WGTP monitoring stations.

The air quality goals are shown in Tables 4 and 5 below.

Table 4: Air Quality Standards for Station 1

Parameter	Time Period	Exceedance Level	Units	Maximum allowable exceedances
DNA	1 day	F0		None
PM ₁₀	1 day	50	μg/m³	(see note
PM ₁₀	1 year	20	μg/m³	None
PM _{2.5}	1 day	25	μg/m³	None
1 1012.5	1 day	23	μ6/ 111	(see note)
PM _{2.5}	1 year	8	μg/m³	None

Note:

Exceptional events are excluded from this standard. As per the Ambient Air Quality NEPM, *Exceptional event* means a fire or dust occurrence that adversely affects air quality at a particular location and causes an exceedance of 1-day average standards in excess of normal historical fluctuations and background levels and is directly related to: bushfire; jurisdiction authorised hazard reduction burning; or continental scale windblown dust.

Ecotech will include any valid data identified as being associated with an exceptional event in all report tables and graphic representations. However, 1-day averages associated with exceptional events will not be counted as exceedances of the Air Quality standard.

Table 5: Air Quality Standards and Air Toxic NEPM Goals for Stations 2, 3, 4 & 5

Parameter	Time Period	Exceedance Level	Units	Maximum allowable exceedances	
СО	1 hour	29.0	ppm	-	
NO ₂	1 hour	140	ppb	-	
Benzene ¹	1 year (based on 1-day averages)	0.003	ppm	8-year goal is to gather sufficient data nationally to facilitate development of a standard.	
	1 day	1	ppm	8-year goal is to gather	
Toluene ¹	1 year (based on 1-day averages)	0.1	ppm	sufficient data nationally to facilitate development of a standard.	
	1 day	0.25	ppm	8-year goal is to gather	
Xylene ¹	1 year (based on 1-day averages)	0.2	ppm	sufficient data nationally to facilitate development of a standard.	
PM ₁₀	1 day	60	μg/m³	-	
PM _{2.5}	1 day	36	μg/m³	-	

Note:

State Environmental Protection Policy (Air Quality Management (AQM)) Schedule B – Intervention levels for Class 1, 2 and 3 indicators:

Intervention levels are used to assess the air quality monitoring data to determine whether the beneficial uses set out in Clause 9 of this Policy are being protected. Intervention levels are not used

¹ This value is monitoring investigation level of air pollution only, not limits according to Legislation F2011C00855 - National Environment Protection (Air Toxic) Measure 2011.

in the assessment of the design of individual sources. An intervention level is numerically greater than the design criteria for a given pollutant as it does not apply to an individual source but to all sources of the pollutant within a defined area.

3.0 Calibrations and Maintenance

3.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ²
NO, NO _x (EC9841)	ppb	1 ppb	± 13 ppb or 10% of reading, whichever 1 ppb is the greater K factor of 2.0	
NO ₂ (EC9841)	ppb	1 ppb	1 ppb ± 17 ppb K factor of 2.0	
CO (EC9830)	ppm	0.1 ppm	± 1 ppm or 10% of reading, whichever is the greater K factor of 2.0	0 ppm to 50 ppm
PM ₁₀ (TEOM)	μg/m³	0.1 μg/m³	±5.0 μg/m³ or 3.6% of reading, whichever is the greater K factor of 2.0	0 μg/m³ to 1 g/m³
PM _{2.5} (BAM 1020)	μg/m³	1 μg/m³	±5.0 μg/m³ or 5.4% of reading, whichever is the greater k factor of 2.0	5 to 1000 μg/m³

 $^{^2}$ Uncertainties may not be calculated based on the full measurement range. Uncertainty for CO by EC9830 is calculated based on a range of 0-10 ppm. Uncertainty for NO, NO₂ and NO_x by EC 9841 are calculated based on a measurement range of 0-125 ppb.

Parameter	Units	Resolution	Uncertainty	Measurement Range ²
Vector Wind Speed	m/s	0.1 m/s	±0.4 m/s or 2.0% of reading, whichever is greater K factor of 2.0	0 m/s to 30 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.0	0 deg to 360 deg Starting threshold: 0 m/s

3.2. Automatic calibration checks

Automatic span, zero and background checks occur each night for continuously monitored gaseous parameters. Data associated with these checks is invalidated and is not specifically referred to in the valid data exception reports. Table 7 displays the times for when these checks occur.

Table 7: Automatic Span/Zero and Background Check Times

Parameter	Span/Zero	Background
СО	01:00 to 01:25	23:45 to 23:55
NO, NO ₂ , NO _x	01:00 to 01:25	-

3.3. Maintenance

3.3.1. Maintenance notes

3.3.2. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Tables 8 - 12 on the next pages indicate when the particulate, gas and meteorological equipment were last maintained / calibrated.

Table 8: Station . Maintenance Table February 2018

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
PM ₁₀	02/02/18	6 Monthly	02/02/18	6-Monthly
PM _{2.5}	02/02/18	6 Monthly	02/02/18	Yearly
Wind Speed	02/02/18	6 Monthly	04/05/16 ³	2-Yearly
Wind Direction	02/02/18	6 Monthly	04/05/164	2-Yearly

Table 9: Station 2 Maintenance Table February 2018

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
PM ₁₀	01/02/18	Monthly	09/01/18	6-Monthly
PM _{2.5}	01/02/18	Monthly	13/11/17	Yearly
Wind Speed	01/02/18	Monthly	24/05/164	2-Yearly
Wind Direction	01/02/18	Monthly	24/05/16 ⁵	2-Yearly

³ Wind tunnel calibration performed on 04/05/2016 and installed at Station 1 on 22/07/2016. ⁴ Wind tunnel calibration performed on 24/05/2016 and installed at Station 2 on 12/09/2016.

Table 10: Station 3 Maintenance Table February 2018

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
PM ₁₀	14/02/18	Non-schedule	04/01/18	6-Monthly
PM _{2.5}	14/02/18	Non-schedule	04/01/18	Yearly
Wind Speed	14/02/18	Non-schedule	18/01/16 ⁵	2-Yearly
Wind Direction	14/02/18	Non-schedule	18/01/16 ⁶	2-Yearly

Table 11: Station 4 Maintenance Table February 2018

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
PM ₁₀	30/01/18	Monthly	30/01/18	6-Monthly
PM _{2.5}	30/01/18	Monthly	03/07/17	Yearly
СО	30/01/18	Monthly	30/01/18	Monthly
NO, NO ₂ , NO _x	30/01/18	Monthly	30/01/18	Monthly
ВТЕХ	30/01/18	Weekly	Every sample	On supply of flow controller ⁶
Wind Speed	30/01/18	Monthly	21/10/16 ⁷	2-Yearly
Wind Direction	30/01/18	Monthly	21/10/168	2-Yearly

⁵ Wind tunnel calibration performed on 18/01/2016 and installed at Station 3 on 06/02/2017.

⁶ Sampling flow orifice checks and calibrations performed by ALS for each orifice mass flow controller supplied. Records are held by Ecotech and available on request.

⁷ Wind tunnel calibration performed on 21/10/2016 and installed at Station 4 on 22/11/2016.

Table 12: Station 5 Maintenance Table February 2018

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
PM ₁₀	02/02/18	Monthly	19/01/18	6-Monthly
PM _{2.5}	02/02/18	Monthly	06/04/17	Yearly
Wind Speed	02/02/18	Monthly	15/04/16 ⁸	2-Yearly
Wind Direction	02/02/18	Monthly	15/04/16 ⁹	2-Yearly

4.0 Results

4.1. Valid Data Capture

Valid data capture refers to the amount of valid data collected during the report period. It is based on 5-minute data for all continuously monitored parameters, with the exception of $PM_{2.5}$. The $PM_{2.5}$ data is based on 1-hour data.

The percentage of valid data captured is calculated using the following equation:

Percentage Valid Data capture = (Reported air quality data / Total data) x 100%

Where:

• Reported air quality data = Number of samples (instrument readings) which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, equipment failures, planned and unplanned maintenance.

• Total data = Total number of samples (instrument readings) expected for the sampling period. Total data is calculated based on the same averaging period as "reported air quality data" and the duration of the corresponding report period. e.g. for 5-minute data collected over a month of 31 days, the total data would be equal to 12 (5-minute samples in an hour) x 24 (hours in a day) x 31 (days in a month) = 8928 samples.

⁸ Wind tunnel calibration performed on 15/04/2016 and installed at Station 5 on 27/01/2017.

Table 13 on below displays data capture statistics for February 2018. **Bold** values in the table indicates the of percentage valid data capture below 85%.

Table 13: WGTP network Monthly Data Capture for February 2018

Parameter	Station 1 (%)	Station 2 (%)	Station 3 (%)	Station 4 (%)	Station 5 (%)
PM ₁₀	99.4	99.7	95.9	100.0	99.4
PM _{2.5}	99.4	99.9	95.7	99.3	85.7
WS, WD	99.8	100.0	96.6	100.0	100.0
СО	-	-	-	96.9	-
NO, NO ₂ , NO _x	-	-	-	97.9	-
BTEX	-	-	-	100.0	-

4.2. Air Quality Monthly Summary

Tables 14 - 19 below include a summary of any air quality exceedances recorded at WGTP network during the report period.

Table 14: Station 1 Exceedances recorded for February 2018

Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance
PM ₁₀	1 day	50 μg/m³	None recorded	-	-
PM _{2.5}	1 day	25 μg/m³	None recorded	-	-
PM ₁₀	1 year	20 μg/m³	None recorded	-	-
PM _{2.5}	1 year	8 μg/m³	None recorded	-	-

Table 15: Station 2 Exceedances recorded for February 2018

Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance
PM ₁₀	1 day	60 μg/m³	None recorded	-	-
PM _{2.5}	1 day	36 μg/m³	None recorded	-	-

Table 16: Station 3 Exceedances recorded for February 2018

Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance	
PM ₁₀	1 day	60 μg/m³	None recorded	-	-	
PM _{2.5}	1 day	36 μg/m³	None recorded	-	-	

Table 17: Station 4 Exceedances recorded for February 2018

Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance	
PM ₁₀	1 day	60 μg/m³	None recorded	-	-	
PM _{2.5}	1 day	36 μg/m³	None recorded	-	-	
СО	1 hour	29 ppm	None recorded	-	-	
NO ₂	1 hour	140 ppb	None recorded	-	-	

Table 18: Station 4 readings above Monitoring Investigation Level recorded for February 2018

Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance	
Toluene	1 day	1 ppm	None recorded	-	-	
Xylenes	1 day	0.25 ppm	None recorded	-	-	

Table 19: Station 5 Exceedances recorded for February 2018

Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance	
PM ₁₀	1 day	60 μg/m³	None recorded	-	-	
PM _{2.5}	1 day	36 μg/m³	None recorded	-	-	

4.3. BTEX Analytical Results Summary

Table 20 on the next page displays a summary of the analytical results for BTEX during the reporting period. Full analysis reports from ALS are included in Appendix 3. Results displayed as "<x ppb" indicated a reading below the lower detectable limit.

Table 20: Station 4 BTEX Analytical Results for February 2018

Parameter	NEMP MIL	Units	Samples				
Canister Number			C4981†	C12642†	C4985	C12643	C4778
Sample Date			02/02/18	08/02/18	14/02/18	20/02/18	26/02/18
Final Vacuum		inHg	2	3	6	6	4
Benzene	3 (1 year)	ppb	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	1000 (1 day) 100 (1 Year)	ppb	1.5	1.6	0.9	1.5	0.7
Ethyl benzene	-	ppb	<0.5	<0.5	<0.5	<0.5	0.8
m,p-xylenes	250 (1 day)	ppb	<1.0	<1.0	<1.0	<1.0	1.2
o-xylene		ppb	<0.5	<0.5	<0.5	<0.5	<0.5

[†]Sample flow may have decreased towards the end of the 24 hours sampling period. Therefore, the reported result may not be fully representative of the 24-hour average concentration.

4.4. Graphic Representations

Validated 5-minute data for NO, NO₂, NO_x, CO and PM₁₀, and validated 1-hour data for PM_{2.5} were used to construct the following monthly graphic representations.

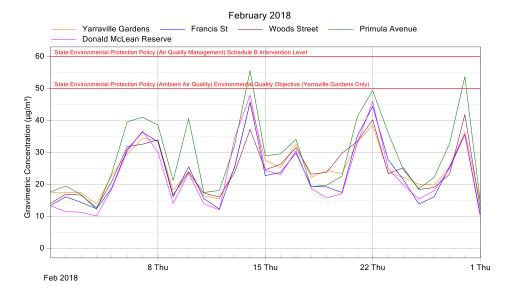


Figure 2: PM₁₀ 1-day Averages for February 2018

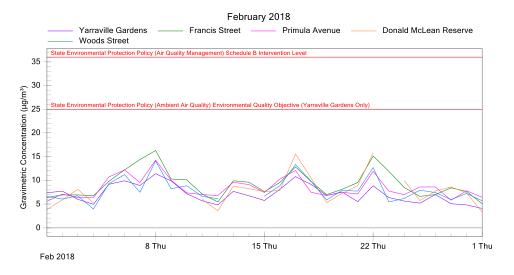


Figure 3: PM_{2.5} 1-day Averages for February 2018

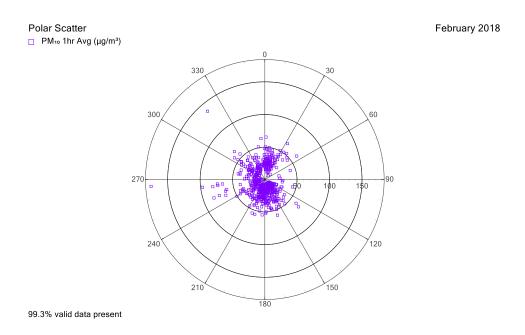


Figure 4: Station 1 PM₁₀ 1-hour Averages scatter plot for February 2018

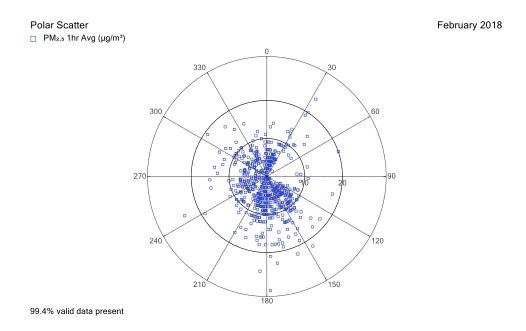


Figure 5: Station PM_{2.5} 1-hour Averages scatter plot for February 2018

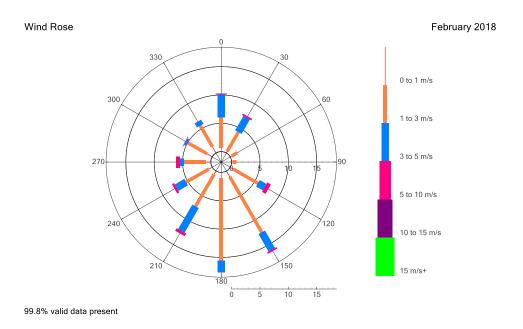


Figure 6: Station 1 Monthly Wind Rose for February 2018

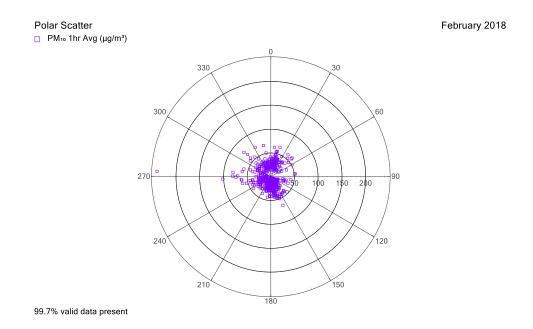


Figure 7: Station 2 PM₁₀ 1-hour Averages scatter plot for February 2018

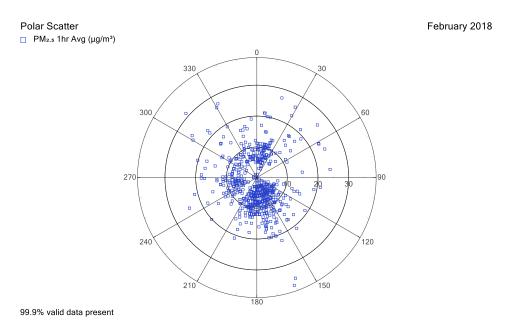


Figure 8: Station 2 PM_{2.5} 1-hour Averages scatter plot for February 2018

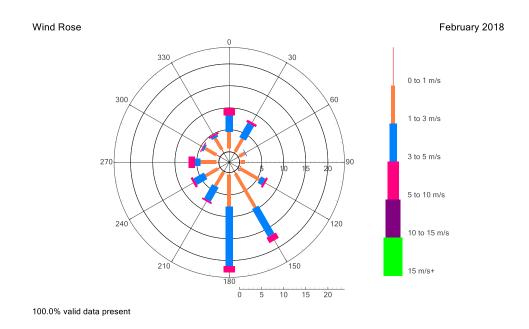


Figure 9: Station 2 Monthly Wind Rose for February 2018

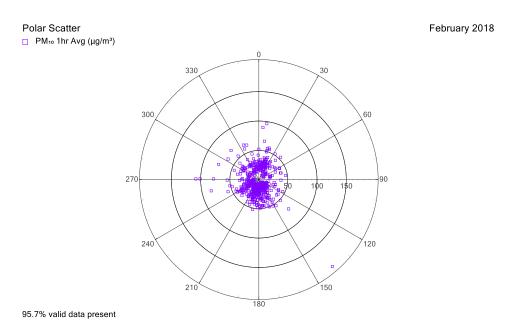


Figure 10: Station 3 PM₁₀ 1-hour Averages scatter plot for February 2018

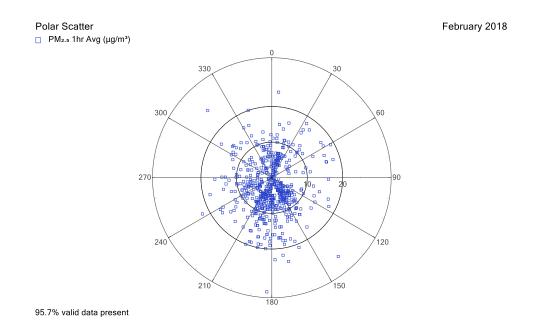


Figure 11: Station 3 PM_{2.5} 1-hour Averages scatter plot for February 2018

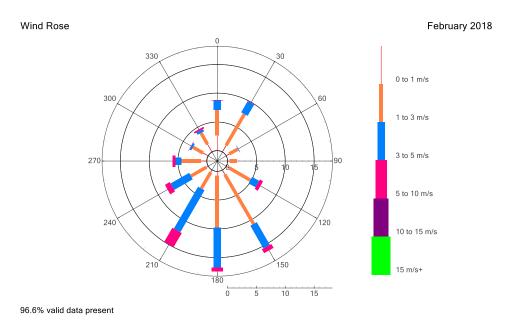


Figure 12: Station 3 Monthly Wind Rose for February 2018

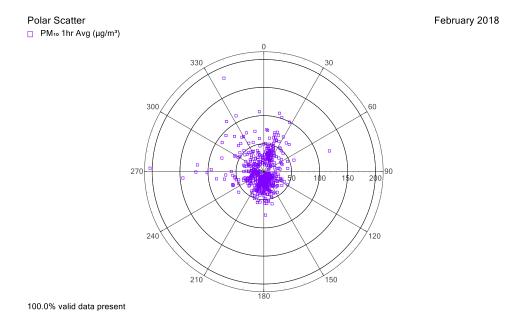


Figure 13: Station 4 PM₁₀ 1-hour Averages scatter plot for February 2018

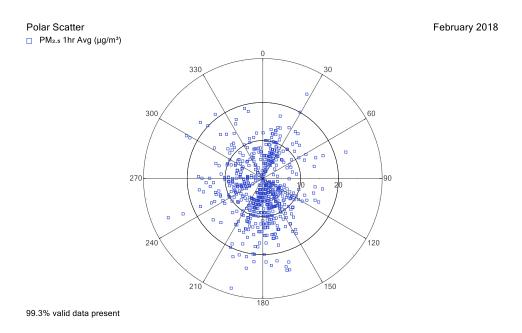


Figure 14: Station 4 PM_{2.5} 1-hour Averages scatter plot for February 2018

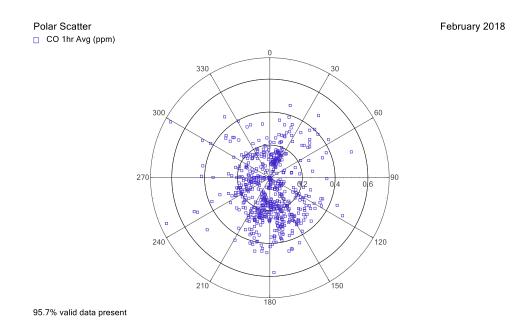


Figure 15: Station 4 CO 1-hour Averages scatter plot for February 2018

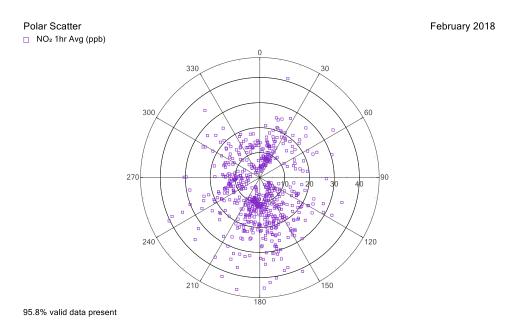


Figure 16: Station 4 NO₂ 1-hour Averages scatter plot for February 2018

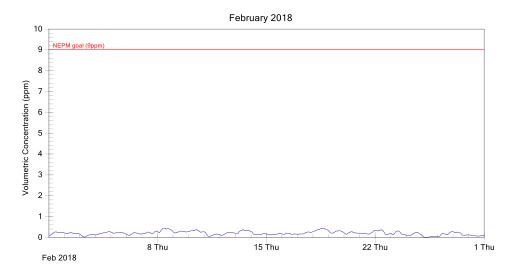


Figure 17: Station 4 CO 8-hours rolling Averages for February 2018

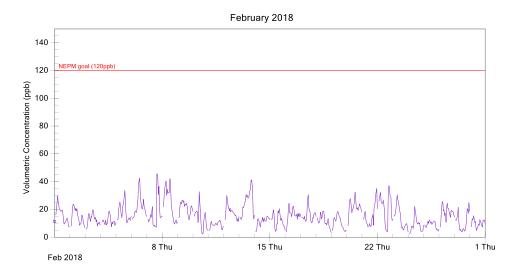


Figure 18: Station 4 NO₂ 1-hour Averages for February 2018

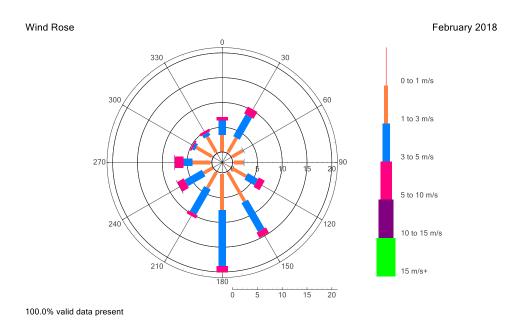


Figure 19: Station 4 Monthly Wind Rose for February 2018

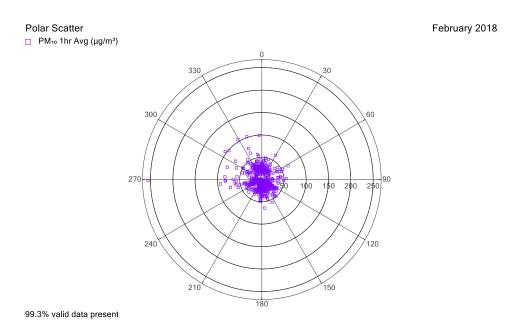


Figure 20: Station 5 PM₁₀ 1-hour Averages scatter plot for February 2018

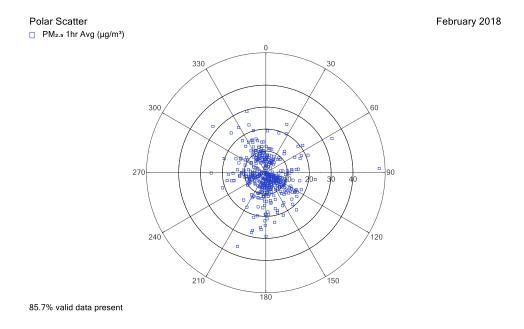


Figure 21: Station 5 PM_{2.5} 1-hour Averages scatter plot for February 2018

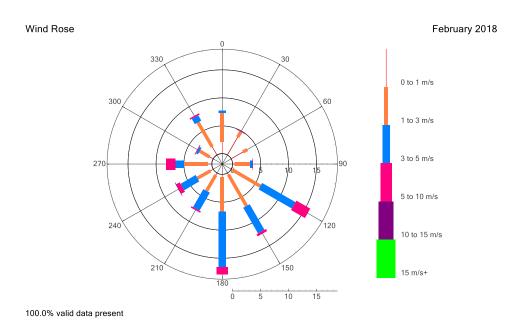


Figure 22: Station 5 Monthly Wind Rose for February 2018

5.0 Valid Data Exception Table

Tables 20 - 24 below detail all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 21: Station 1 Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
02/02/18 02:00	02/02/18 04:55	Power interruption and subsequent instrument stabilisation	All parameters	DL	21/03/18
02/02/18 12:00	02/02/18 13:45	Scheduled 6 monthly maintenance	PM _{2.5} , PM ₁₀	DL	21/03/18
15/02/18 13:35	15/02/18 14:20	Brief power interruption and subsequent instrument stabilisation	WS, WD, PM ₁₀	DL	21/03/18

Table 22: Station 2 Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/02/18 09:00	01/02/18 11:50	Scheduled monthly maintenance	All parameters	DL	21/03/18

Table 23: Station 3 Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/02/18 12:00	01/02/18 14:50	Scheduled monthly maintenance	PM _{2.5} , PM ₁₀	DL	21/03/18
12/02/18 01:00	12/02/18 03:30	Power interruption and subsequent instrument stabilisation	All parameters	DL	21/03/18
13/02/18 15:00	14/02/18 12:15	Power interruption	All parameters	DL	21/03/18
14/02/18 12:10	14/02/18 15:00	Non-scheduled maintenance - Reset main circuit breaker and instrument stabilisation	PM _{2.5} , PM ₁₀	DL	21/03/18

Table 24: Station 4 Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
02/02/18 00:30	02/02/18 23:30	Sample C4981 flow final vacuum was low. Sample flow may have decreased towards the end of the 24 hours sampling period. Therefore, the reported result may not be fully representative of the 24 hours average concentration	BTX TO-15	DL	21/03/18
04/02/18 01:30	28/02/18 01:30	Additional instrument stabilisation following the automatic span checks	со	DL	21/03/18
06/02/18 11:00	06/02/18 11:15	Scheduled weekly maintenance - BTX TO-15 Canister changed over	No data affected	DL	21/03/18

Start Date	End Date	Reason	Change Details	User Name	Change Date
08/02/18 00:30	08/02/18 23:30	Sample C12642 flow final vacuum was low. Sample flow may have decreased towards the end of the 24 hours sampling period. Therefore, the reported result may not be fully representative of the 24 hours average concentration	BTX TO-15	DL	21/03/18
09/02/18 23:00	09/02/18 23:35	Brief power interruption and subsequent instrument stabilisation	PM _{2.5} , PM ₁₀ , CO, NO, NO ₂ , NO _x	DL	21/03/18
11/02/18 23:00	11/02/18 23:00	Brief power interruption and subsequent instrument stabilisation	PM _{2.5}	DL	21/03/18
13/02/18 13:00	13/02/18 14:00	Unrealistic data - Readings below the instrument range	PM _{2.5}	DL	21/03/18
13/02/18 16:00	13/02/18 16:00	Scheduled weekly maintenance - BTX TO-15 Canister changed over	No data affected	DL	21/03/18
19/02/18 12:00	19/02/18 12:00	Scheduled weekly maintenance - BTX TO-15 Canister changed over	No data affected	DL	21/03/18
23/02/18 16:00	23/02/18 16:00	Scheduled weekly maintenance - BTX TO-15 Canister changed over	No data affected	DL	21/03/18
28/02/18 09:30	28/02/18 10:00	Scheduled weekly maintenance - BTX TO-15 Canister removed	No data affected	DL	21/03/18

Table 25: Station 5 Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
02/02/18 09:00	02/02/18 12:15	Scheduled monthly maintenance	PM _{2.5} , PM ₁₀	DL	21/03/18
03/02/18 07:10	03/02/18 07:10	Unrealistic data - WS spike	WS & WD	DL	21/03/18
04/02/18 18:00	24/02/18 18:00	Intermittent unrealistic data - Data affected by interference from sample humidity due to shelter conditions	PM _{2.5}	DL	21/03/18
05/02/18 19:35	21/02/18 23:00	Intermittent unrealistic data - Possible moisture interference	PM ₁₀	DL	21/03/18

6.0 Report Summary

- The percentage of valid data capture for most of parameters at WGTP network was above 85% for the reporting month.
- The flow final vacuums of two canisters sampled during February 2018 were low. The sample flow may have decreased towards the end of the 24 hours sampling period. Therefore, the reported results may not be fully representative of the 24-hour average concentration. Refer to Table 20 for more details
- \bullet There was no recorded PM_{10} readings over the exceedance limits at WGTP network during the reporting month.

END OF	REPORT

Appendix 1 - Definitions & Abbreviations

Micrograms per cubic metre at standard temperature and pressure (0°C and 101.3

 $\mu g/m^3$ kPa)

BTEX Benzene, Toluene, Ethyl Benzene and Xylene *ortho-, meta-* and *para-*isomers

Wind conditions where the wind speed is below the operating range of the wind

calm sensor

CO Carbon monoxide

deg Degrees (True North)

m/s Metres per second

NO Nitric oxide

NO₂ Nitrogen dioxide

NO_x Oxides of nitrogen

PM₁₀ Particulate less than 10 microns in equivalent aerodynamic diameter

PM_{2.5} Particulate less than 2.5 microns in equivalent aerodynamic diameter

ppb Parts per billion

ppm Parts per million

Sigma Theta is the standard deviation of the horizontal wind direction fluctuations

Sigma over the averaging period.

WD Vector Wind Direction

WS Vector Wind Speed

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Beta count failure refers to a fault in the functioning of the beta attenuation monitor.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance.

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Overnight zero out of tolerance refers to when the automatic zero reading measured by the analyser falls outside the expected limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Tape break refers to the breaking of the beta attenuation monitor sample tape during operation.

Warm up after power interruption refers to the start up period of an instrument after power has been restored.

Appendix 3 – BTEX Analytical Results

CERTIFICATE OF ANALYSIS

Work Order : EN1801676

Client : ECOTECH PTY LTD

Contact : LARA NICHOLAS

Address : 1492 FERNTREE GULLY ROAD

KNOXFIELD VICTORIA, AUSTRALIA 3180

Telephone : +61 03 9730 7800
Project : WD4 PRIMULA AVE

Order number : 234215

C-O-C number : ----

Sampler : DANIEL RAYMOND

Site : ---

Quote number : NE/070/17

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 4

Laboratory : Environmental Division Newcastle

Contact : Hayley Withers

Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

Telephone : +612 4014 2500

Date Samples Received : 16-Feb-2018 09:00

Date Analysis Commenced : 21-Feb-2018

Issue Date : 22-Feb-2018 16:09

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryDale SempleAnalystNewcastle - Organics, Mayfield West, NSWDaniel JunekSenior Air AnalystNewcastle - Organics, Mayfield West, NSWDaniel JunekSenior Air AnalystNewcastle, Mayfield West, NSW

Page : 2 of 4
Work Order : EN1801676

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP101: Results reported in μg/m³ are calculated from PPBV results based on a temperature of 25°C and atmospheric pressure of 101.3 kPa.
- CAN-001: Results for Pressure As Received are measured under controlled conditions using calibrated laboratory gauges. These results are expressed as an Absolute Pressure. Equivalent gauge pressures may be calculated by subtracting the Pressure Laboratory Atmosphere taken at the time of measurement.
- CAN-001: Results for Pressure Gauge as Received are obtained from uncalibrated field gauges and are indicative only. These results may not precisely match calibrated gauge readings and may vary from field measurements due to changes in temperature and pressure

Page : 3 of 4
Work Order : EN1801676

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Analytical Results

Sub-Matrix: AIR (Matrix: AIR)	Client sample ID			020218 C4981_S1617	080218 C12642_S1615	 	
	Cli	ent sampli	ng date / time	02-Feb-2018 00:00	08-Feb-2018 00:00	 	
Compound	CAS Number	LOR	Unit	EN1801676-001	EN1801676-002	 	
				Result	Result	 	
EP101: VOCs by USEPA Method TO	15 (Calculated Conce	entration)					
Benzene	71-43-2	1.6	μg/m³	<1.6	<1.6	 	
Toluene	108-88-3	1.9	μg/m³	5.6	6.0	 	
Ethylbenzene	100-41-4	2.2	μg/m³	<2.2	<2.2	 	
meta- & para-Xylene	108-38-3 106-42-3	4.3	μg/m³	<4.3	<4.3	 	
ortho-Xylene	95-47-6	2.2	μg/m³	<2.2	<2.2	 	
Naphthalene	91-20-3	2.6	μg/m³	<2.6	<2.6	 	
Total Xylenes		6.6	μg/m³	<6.6	<6.6	 	
EP101: VOCs by USEPA Method TO	15r						
Benzene	71-43-2	0.5	ppbv	<0.5	<0.5	 	
Toluene	108-88-3	0.5	ppbv	1.5	1.6	 	
Ethylbenzene	100-41-4	0.5	ppbv	<0.5	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	1.0	ppbv	<1.0	<1.0	 	
ortho-Xylene	95-47-6	0.5	ppbv	<0.5	<0.5	 	
Naphthalene	91-20-3	0.5	ppbv	<0.5	<0.5	 	
Total Xylenes		1.5	ppbv	<1.5	<1.5	 	
Sampling Quality Assurance							
Pressure - As received	PRESSURE	0.1	kPaa	95.7	101	 	
Pressure - Gauge as Received		1	Inches Hg	-2	-3	 	
Pressure - Laboratory Atmosphere		0.1	kPaa	102	102	 	
Temperature as Received		0.1	°C	21.0	21.0	 	
USEPA Air Toxics Method TO15r Su	irrogates						
4-Bromofluorobenzene	460-00-4	0.5	%	101	99.9	 	

Page : 4 of 4
Work Order : EN1801676

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Surrogate Control Limits

Sub-Matrix: AIR		Recovery Limits (%)			
Compound	CAS Number	Low	High		
USEPA Air Toxics Method TO15r Surrogates					
4-Bromofluorobenzene	460-00-4	60	140		

QUALITY CONTROL REPORT

· EN1801676 Work Order

Client : ECOTECH PTY LTD Laboratory

Contact : LARA NICHOLAS Contact

Address Address : 1492 FERNTREE GULLY ROAD : 5/585 Maitland Road Mayfield West NSW Australia 2304

KNOXFIELD VICTORIA. AUSTRALIA 3180

Telephone : +61 03 9730 7800 Project : WD4 PRIMULA AVE

Order number : 234215

C-O-C number

Sampler : DANIEL RAYMOND

Site

Quote number : NE/070/17

No. of samples received : 2 No. of samples analysed : 2 Page : 1 of 3

: Environmental Division Newcastle

: Hayley Withers

Telephone : +612 4014 2500 Date Samples Received : 16-Feb-2018 **Date Analysis Commenced** : 21-Feb-2018

22-Feb-2018 Issue Date

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category Dale Semple Analyst Newcastle - Organics, Mayfield West, NSW Daniel Junek Senior Air Analyst Newcastle - Organics, Mayfield West, NSW Daniel Junek Senior Air Analyst Newcastle, Mayfield West, NSW

Page : 2 of 3 Work Order : EN1801676

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: AIR				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP101: VOCs by USEPA Method TO15r (QC Lot: 1447668)									
EN1801676-001	020218 C4981_S1617	EP101-H: Benzene	71-43-2	0.5	ppbv	<0.5	<0.5	0.00	No Limit
		EP101-H: Toluene	108-88-3	0.5	ppbv	1.5	1.5	0.00	No Limit
		EP101-H: Ethylbenzene	100-41-4	0.5	ppbv	<0.5	<0.5	0.00	No Limit
		EP101-H: ortho-Xylene	95-47-6	0.5	ppbv	<0.5	<0.5	0.00	No Limit
		EP101-H: meta- & para-Xylene	108-38-3	1	ppbv	<1.0	<1.0	0.00	No Limit
			106-42-3						

Page : 3 of 3 Work Order : EN1801676

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control terms Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (DCS) refers to certified reference materials, or known interference free matrices spiked with target analytes. The purpose of these QC parameters are to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS and DCS.

Sub-Matrix: AIR		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Recovery (%)		Recovery Limits (%)		RPDs (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP101: VOCs by USEPA Method TO15r	(QCLot: 1447668)										
EP101-H: Benzene	71-43-2	0.5	ppbv	<0.5	100 ppbv	94.8	95.9	77	114	25	25
EP101-H: Toluene	108-88-3	0.5	ppbv	<0.5	100 ppbv	94.6	95.9	78	115	25	25
EP101-H: Ethylbenzene	100-41-4	0.5	ppbv	<0.5	100 ppbv	96.0	96.5	82	121	25	25
EP101-H: meta- & para-Xylene	108-38-3	1	ppbv	<1.0	200 ppbv	95.9	97.0	82	122	25	25
	106-42-3										
EP101-H: ortho-Xylene	95-47-6	0.5	ppbv	<0.5	100 ppbv	91.4	92.1	83	122	25	25

[•] No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EN1801676** Page : 1 of 4

Client : ECOTECH PTY LTD Laboratory : Environmental Division Newcastle

 Contact
 : LARA NICHOLAS
 Telephone
 : +612 4014 2500

 Project
 : WD4 PRIMULA AVE
 Date Samples Received
 : 16-Feb-2018

 Site
 :--- Issue Date
 : 22-Feb-2018

Sampler : DANIEL RAYMOND No. of samples received : 2
Order number : 234215 No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4
Work Order : EN1801676

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: AIR

Evaluation: * = Holding time breach: \checkmark = Within holding time.

Method	Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP101: VOCs by USEPA Method TO15r								
Summa style Canister - ALS Supplied Silonite (EP101-H) 020218 - C4981_S1617	02-Feb-2018				21-Feb-2018	04-Mar-2018	✓	
Summa style Canister - ALS Supplied Silonite (EP101-H) 080218 - C12642_S1615	08-Feb-2018				21-Feb-2018	10-Mar-2018	✓	
Sampling Quality Assurance								
Summa style Canister - ALS Supplied Silonite (CAN-001) 020218 - C4981_S1617	02-Feb-2018				21-Feb-2018	02-Feb-2019	✓	
Summa style Canister - ALS Supplied Silonite (CAN-001) 080218 - C12642_S1615	08-Feb-2018				21-Feb-2018	08-Feb-2019	1	

Page : 3 of 4 Work Order EN1801676

Client ECOTECH PTY LTD WD4 PRIMULA AVE Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: AIR				Evaluation: * = Quality Control frequency not within specification; * = Quality Control frequency within specification.						
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification			
Analytical Methods	Method	OC	Regular	Actual	Expected	Evaluation				
Duplicate Control Samples (DCS)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Laboratory Duplicates (DUP)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Laboratory Control Samples (LCS)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Method Blanks (MB)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard			

Page : 4 of 4 Work Order : EN1801676

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Canister Sampling - Field Data	CAN-001	AIR	In house: Referenced to USEPA TO14 / TO15
Hydrocarbons in Air by USEPA TO15	EP101-H	AIR	In house: Referenced to USEPA TO15r Volatile Organic Compounds in Air by USEPA TO15. Aliphatic and Aromatic Hydrocarbons
Hydrocarbons in Air by USEPA TO15 (mass/volume)	EP101-H-MV	AIR	In house: Referenced to USEPA TO15r Hydrocarbons in Air by USEPA TO15 (Calculated Concentration)

ENFM (204A/2)

AIR CANISTER CHAIN OF CUSTODY

If sourced from an ALS Laboratory: please tick →

Client Supplied Canister(s)?

QACELACE 21 Barne Road Peorals 3A 5895 Pr. 05 8159-1997 E: sdowlde@alsophet.com

DBRISBANC 2:Byrn Street Stafford GLD 4952 Ph: 07 1241 7222 E. sarvjes brebane@arsphylatopin DGLADSTONE 46 Catempromis Drive Canon CLD 4690 Ptr 97 7471 6600 E. gledatsne-Dalagebaldom DBACKAY 78 hansan Road Mackay OLD 4740 Ph: 67-4944 P477 E: mackay@olsglobalcom

DUELSONERNS 2-4 Viesch Road Spregvale VIC 2171 Ph. 53 6549 9630 6: serph-s reference@esphalacon CHUDGEE 1/29 Syoney Road Mudgee NSW 2350-Pa: 02/00/16/35 E. madgee proi@polagy/belcom

THENCASTLE SIRES Mediant Road Magned West NEW 2014 Ptr 02 4014 2008 E. ammine newcastle@alegiocal.com DhiChis 4, 4/13 Ceary Place both hours NSW 254:
Ph: 62,4423,2683 E. nowrathwookbal com

DSYTHEY ZIT-200 Woodpay Road Smithfield NSW 2164 Pr- 62 8154 1655 Er sangka sydning/gasgkharcom OFOWNSVILLE 14-13 Designs Court Bestie (ILD 4818

Approved Date: 22/05/2014

1	Pr: 67 4796 0386 \$	El transsille environmentes@pstgiocel.com
	Martin andone	Pr Kenny Street Wittingsong NEVF 2505

70

THE 10 Hed Yeay Makaga IV-2 2000	GRADOLOGO OF STATES OF STA
U:APYCOO	THE LANGUAGE BY Kentry Street Historiagonia, NEW 221

LIENT:	T: ECOTECH				TURNAROUND REQUIREMENTS: Standard TAT (List due date):								USE ONLY	(Circle) Receiver to initial s	and data time						
FFICE:	1492 Ferntree	Gully Rd, KNOX	FIELD VIC		(Standard TAT may be extended for multiple sequential analysis suites) Non Standard or urgent TAT (List						Custody Seal Intact? Rec Lab Y / N			abY/N NEATON	N/A						
ROJEC	T: WD4 PRIM	IULA AVE				OTE NO.: N							COC SEC	UENCE N	IMBER (C	Circle)	Valves Receip	clased on 1	Rec L	abyin Ne	N/A
URCHA	SE ORDER NO	234215			COUNTRY OF ORIGIN:				coc:	<i>◎</i> ₂	3	4 5	6				Control of the second s	65) No			
ROJEC	T MANAGER:	Lara Nicholas		CON	ONTACT PH: 03 9370 7845 0417351053					OF:	(1) 2	3	4 5	6	7 Other c	omment:		Temperature *C			
AMPLE	R:		Daniel Raymond	SAM	IPLER MO	BILE: 04194	24932		RELIN	QUIS	HED BY:		RELINQ	JISHED B	Y:		RELINQUIS	HED BY:		RELINQUISHED B	Υ:
OC Em	ailed to ALS? (YES / NO)		EDD	FORMAT	(or default):	:		1			Signature and date/firms			Signature a	od dalašime		Silon	nelwe and detectime	Sione	ture and date/from
nail Re	ports to (will de	efault to PM if no o	ther addresses are listed): lara.nicholas@eco	otech.com					RECE	IVED	BY:	•	RECEIVE	D BY:			RECEIVED	BY:		RECEIVED BY:	
nail Inv	ill Invoice to (will default to PM if no other addresses are listed): naomi.dans@ecotech.com								K	<u> 45</u>	$\geq \leqslant$	Signature and deservine			Signature a	nd date/time		Sign	nature and dalectime	Signa	iture and date/time
ЭММЕ	NTS/SPECIAL H	IANDLING/REPL	ACEMENT OR RETURN INSTRUCTIONS:					į	6/2	/I フ	gai	n									
	GAS SAMPLE CONTAINER INFORMATION						r Gauge res (PSI)				ion Reports and ured by the Lab		ANA	LYSES	REQU	JES.	TED		Additional Information		
6 VGC ONLY			CANISTER / SAMPLE DETAILS				F	Rep	orting	Requ	irements	Su	Suite Codes must be listed to attract suite price								
40.0	CANISTER	FLOW	OLIENT CAMPLE ID	DATE / TIME	MATRIX	Pre- Sampling	Post Sampling		LORs		Units	VI-V1						hs	Comments	on LORs required, por contaminant levels, or	tential r samples
AB ID	SERIAL NO.	CONTROLLER SERIAL NO.	CLIENT SAMPLE ID	SAMPLED	(eg Air, Soll Gas)			Amblent Air	Soll Gas (NEPM)	Other / Indoor	ppbv, ppmv, µg/m³ mg/m³	BTEXN						requiring specific QC analysis etc. (Lo routine method LOR after dilution)			
1 :	4981	1617	020218	02/02/18 00:30 - 23:30	AIR	30	4	х			x	х								·	
2_	12642	1615	080218	08/02/18 00:30 - 23:30	AIR	30	4	х			х	х								-	
										ľ	-										
																			a special section of the section of		
																			į		
												En	vironm	ental [Divisio	n			11.00		
												Ne	wcastle	€			-		- 1		
													Nork Or	der Refe	rence	^					
													EN1	8U	16/1	0			1		
												_	**				*****		Lacus		***************************************
4										-											
													117						e e e e e e e e e e e e e e e e e e e		
44													0.5					-	•		
														of Wi nd R		11					
		····									-	Telep	hone: +6	1 2 4014 2	500				***	·····	
												L	L						6 6 7		*
									-	_				-							
															.						
b Spe	cific Instructi	ons: Ecotech T	imers Sent with samples to be cleane	d with nitrogen an	d returne	d with new	canisters								•			*			

Form Page 1 of 1

Inquiries: Client Services - Newcastle Phone: +61 (02) 4014 2500

E-mail: samples.newcastle@alsenviro.com

	Knoxfield VIC 3180	Agreed Rent Free Period: 14 da					
Delivery Address:	1492 Ferntree Gully Rd	Workorder:					
ALS Quotation:	NE/070/17	Dispatched By: asap					
Telephone:	03 9730 7800	Deliver By: asap					
Contact:	Lara Nicholas	Request Received By: HW					
Client / Office:		ALS Use ONLY					
Dispatch to:							

SPECIAL INSTRUCTIONS: PLEASE EMAIL CLEAN CERTIFICATES TO LARA NICHOLAS ON DISPATCH.....

Air Sampling Equipment Request

CAN	ISTERS		14.1	i Arri	(Mark)	源体	32 L	English (18	Carlo Carlo Carlo	100.50	
No.	-Canister Type		Size	Gauge *	Valve	Сар	Rental	No Returned	Leak Checked	Certifie	& Date
3	Entech Silonite Canister	(Summa [™])	6L	Yes	S	Yes	\$200 ea		VX	24	1/18

CONNECTORS AND FLOW CONTROL DEVICES

No	Equipment/Type	Duration	Flow T	Gauge	Certified	Sealed // Vacuum	Connection Q Quick Connect S. Swagelok	No. Returned	(Rental ¹⁾
3	Passive Sampler -TWA	24hr	No		Yes	Yes / No	S		Incl Above
ļ	Flow Sampler Caps		No	No	No	Yes / No			\$20 ea. Replacement
	ECOTECH Autosampler		No	No	No	Yes / No			N/A
	%" Swagelok connectors and ferrules (spares)	•	- -	-					\$5 ea. Replacement

Jother (specify) 3x ecotech sampling timers

'Refer to Acceptance of Terms + 3x male blocking nuts, + 3x female blocking nuts.

ALS use only	Market Line 18		rangan Spanish to Sangan ayan		<u> </u>
Sampling Guide Included (Y / N)	Packed by:	<u> </u>	Dispatch Time / Date	2.4/1	ন্ত্
Number of Boxes:	2	Consignment Note Number:	9802 1108	9316	٦
Courier / Dispatcher:	707	Consignment Dispatched by:	772cV		

ALS SUPPLIED EQUIPMENT

Item	Quantity	Item Description	Serial Nos
	3	6L Silonite Summa™ canister	4985 12642 / Rect 16/21
	3	Passive Sampler – TWA – 24hr	1615 2824 2843

MONT SOLUTIONS

Samelier Veldlijestijem Republik

Canister No:

4981

Specified Purpose: USEPA TO15 (Extended Suite)

Ambient Air

Verification Date: Valid To (At least): 24-Jan-2018 / 21-Feb-2018 /

7.11.12.10.11.7.11.

Valid To (At least): Verification File:

180123_24.D

Canister Type: Canister Size: Entech Silonite - Summa Style

6L

Last Stability Check: Next Check Scheduled: Analyst: 22-Sep-2016 22-Sep-2018

Valve Type: Dispatch Pressure: Nupro <0.01 psia

Approved for Dispatch by:

Dale Semple 118

Tanakara Viralinganari Propositi

Constent are verified 10 for purpose for the requested analyses and applications (if knower). For most applications, cares we the dealer dealers by the requirements of USDA material CO15.

Each verification expines a check for contamination, leaks and camage to values. Stability checks are performed after 5 years on I damage to the cardidar or expected. Then every two years, within the designated rolling time to annurs each consider is expected to call the cardidar of the surges chemically without experiment degrees in a

Birlini Noll Mediculum (come en la production de la ferience de la come de la come di grande de la grande de l Estado de la come de la production de la Grande Verde de la companya de la Maria de la Come de la Militaria de La come de

No. of			Verification					
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result				
			ppbv	ppbv				
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform		0.2	<0.2				
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride		0.2	<0.2				
1,1,2-Trichloroethane	Vinyl trichloride		0.2	<0.2				
1,1-Dichloroethane	Ethylidene chloride		0.2	<0.2				
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride		0.2	<0.2				
1,2-Dichloroethane	Ethylene chloride		0.2	<0.2				
1,2,4-Trimethylbenzene	Pseudocum e ne		0.2	<0.2				
1,2-Dibromoethane	EDB / Ethylene dibromide		0.2	<0.2				
1,2-Dichlorobenzene	o-Dichlorobenzene		0.2	<0.2				
1,2-Dichloropropane	Propylene dichloride		0.2	<0.2				
1,3,5-Trimethylbenzene	, Mesitylene		0.2	<0.2				
1,3-Dichlorobenzene	m-Dichlorobenzene		0.2	<0.2				
1,4-Dichlorobenzene	p-Dichlorobenzene		0.2	<0.2				
Benzene	Cyclohexatriene		0.2	<0.2				
Bromomethane	Methyl bromide		0.2	<0.2				
Tetrachloromethane	Carbon tetrachloride		0.2	<0.2				
Chlorobenzene	Phenyl chloride		0.2	<0.2				
Chloroethane	Ethyl chloride		0.2	<0.2				
Chloroform	Trichloromethane		0.2	<0.2				
Chloromethane	Methyl chloride		0.2	<0.2				
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene		0.2	<0.2				
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene		0.2	<0.2				
Ethylbenzene	Phenyl ethane		0.2	<0.2				
Freon 12	Dichlorodifluoromethane		0.2	<0.2				
≗on 11	Trichlorofluoromethane		0.2	<0.2				
Freon 113	1,1,2-Trichloro-1,2,2-trifluoroethane		0.2	<0.2				
Freon 114	1,2-Dichlorotetrafluoroethane		0.2	<0.2				
Hexachlorobutadiene	Hexachloro-1,3-Butadiene		0.2	<0.2				

Statement of the Control of the Cont		utakan sebenjian da dari an saman kerebahan kerebahan dan dari berakan 1 manuhan kerebahan 1 manuhan kerebahan	Verification	all a self-trick and the entire that it is taking to the Left trick of the Self-trick and the Self-trick and te
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result
- ,			vdqq	vdqq
Dichloromethane	Methylene chloride		0.2	<0.2
m- & p-Xylene	1,3 & 1,4 -Dimethylbenzene		0.4	<0.4
o-Xylene	1,2-Dimethylbenzene		0.2	<0.2
Styrene	Vinyl benzene		0.2	<0.2
Tetrachloroethene	PCE / Perchlorethylene		0.2	<0.2
Toluene	Methyl Benzene		0.2	<0.2
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene		0.2	<0.2
Trichloroethene	TCE / Trichloroethylene		0.2	<0.2
Vinyl chloride	Chloroethene .		0.2	<0.2
1,2,4-Trichlorobenzene			0.2	<0.2
1,3-Butadiene	Biethylene		0.2	<0.2
1,4-Dioxane	p-Dioxane		0.2	<0.2
2,2,4-Trimethylpentane	Isooctane	•	0.2	<0.2
4-Ethyltoluene	p-Ethyltoluene		0.2	<0.2
Acetone	2-Propanone		0.2	<0.2
Allyl chloride	3-Chloropropene		0.2	<0.2
Bromodichloromethane	Dichlorobromomethane		0.2	<0.2
Bromoform	Tribromomethane		0.2	<0.2
Carbon disulfide	CS2		0.2	<0.2
Cyclohexane			0.2	<0.2
Dibromochloromethane	Chlorodibromoethane		0.2	<0.2
Ethyl acetate	Acetic ester		0.2	<0.2
Isopropyl alcohol	Isopropanol / 2-Propanol		0.2	<0.2
Methyl butyl ketone	MBK / 2-Hexanone		0.2	<0.2
Methyl ethyl ketone	MEK / 2-Butanone		0.2	<0.2
Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone		0.2	<0.2
Methyl tert-butyl ether	MTBE		0.2	<0.2
n-Heptane			0.2	<0.2
n-Hexane			0.2	<0.2
Propene	Propylene		0.2	<0.2
Tetrahydrofuran	THE		0.2	<0.2
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene		0.2	<0.2
Vinyl acetate	Acetic acid vinyl ester		0.2	<0.2
Bromoethene	Vinyl bromide		0.2	<0.2 <0.2
Benzyl chloride	o-Chlorotoluene		0.2	<0.2
Ethanol	Ethyl alcohol		0.2 0.2	<0.2
Acetonitrile	Methyl cyanide			<0.2
Acrolein	2-Propenal		0.2 . 0.2	<0.2
Acrylonitrile	2-Propenenitrile TBA		0.2	<0.2
tert-Butyl alcohol 2-Chloroprene			0.2	<0.2
Diisopropyl Ether	2-Chloro-1,3-butadiene DIPE		0.2	<0.2
· · · · ·	ETBE		0.2	<0.2
Ethyl tert-butyl ether tert-Amyl methyl ether	TAME		0.2	<0.2
Methyl methacrylate	MMA		0.2	<0.2
1,1,1,2-Tetrachloroethane			0.2	<0.2
Isopropylbenzene	R-130a / Acetylene trichloride Cumene		0.2	<0.2
2-Chlorotoluene	o-Chlorotoluene		0.2	<0.2
n-Propylbenzene	Phenyl propane		0.2	<0.2
tert-Butylbenzene	1,1-Dimethylethylbenzene		0.2	<0.2
sec-Butylbenzene	1-Methylpropylbenzene		0.2	<0.2
2-Isopropyltoluene	o-Cymene		0.2	<0.2
n-Butylbenzene	Phenyl butane		0.2	<0.2
Naphthalene	i nonji balano		0.2	<0.2
			J.=	-0.2

Sampler No:

1617

Specified Purpose:

USEPA TO15 (Extended Suite)

LORs Required: Sampler Type:

Ambient Air

Passive Sampler

Valid To (At least): Verification File:

Verification Date:

05-Jan-2018 02-Feb-2018

180105_09.D

Flow Rate Calibrated at:

ml/min

Analyst:

K. Gelderman

Calibrated by:

y 10/1/18

Approved for Dispatch by:

12/1/18

Samplers are generally on 5rd 153 for purpose for the requested analyses and applications. For most applications, semicars are verified clean according to the requirements of USEPA method 1131 5.

Each verification involves a third for contamination, leaks and damage to littings.

Target Compound	Alt. Name	Verified to	Result
		ppbv	ppbv
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform	0.2	<0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride	0.2	<0.2
1,1,2-Trichloroethane	Vinyl trichloride	0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride	0.2	<0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride	0.2	<0.2
1,2-Dichloroethane	Ethylene chloride	0.2	<0.2
1,2,4-Trimethylbenzene	Pseudocumene	0.2	<0.2
1,2-Dibromoethane	EDB / Ethylene dibromide	0.2	<0.2
1,2-Dichlorobenzene	o-Dichlorobenzene	0.2	<0.2
1,2-Dichloropropane	Propylene dichloride	0.2	<0.2
1,3,5-Trimethylbenzene	Mesitylene	0.2	<0.2
1,3-Dichlorobenzene	m-Dichlorobenzene	0.2	<0.2
1,4-Dichlorobenzene	p-Dichlorobenzene	0.2	<0.2
Benzene	Cyclohexatriene	0.2	<0.2
Bromomethane	Methyl bromide	0.2	<0.2
Tetrachloromethane	Carbon tetrachloride	0.2	<0.2
Chlorobenzene	Phenyl chloride	0.2	<0.2
Chloroethane	Ethyl chloride	0.2	<0.2
Chloroform	Trichloromethane	0.2	<0.2
Chloromethane	Methyl chloride	0.2	<0.2
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene	0.2	<0.2
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene	0.2	<0.2
⊏thylbenzene	Phenyl ethane	0.2	<0.2
್ಲಾಮಿ 12	Dichlorodifluoromethane	0.2	<0.2
Freon 11	Trichlorofluoromethane	0.2	<0.2
Freon 113	1,1,2-Trichloro-1,1,2-trifluoroethane	0.2	<0.2
Freon 114	1,2-Dichlorotetrafluoroethane	0.2	<0.2
Hexachlorobutadiene	Hexachloro-1,3-Butadiene	0.2	<0.2

Target Compound	Alt. Name	Verified to	Result
		ppbv	ppbv
Dichloromethane	Methylene chloride	0.2	<0.2
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene	0.4	<0.4
o-Xylene	1,2-Dimethylbenzene	0.2	<0.2
Styrene	Vinyl benzene	0.2	<0.2
Tetrachloroethene	PCE / Perchlorethylene	0.2	<0.2
Toluene	Methyl Benzene	0.2	<0.2
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene	0.2	<0.2
Trichloroethene	TCE / Trichloroethylene	0.2	<0.2
Vinyl chloride	Chloroethene	0.2	<0.2
1,2,4-Trichlorobenzene		0.2	<0.2
1,3-Butadiene	Biethylene	0.2	<0.2
1,4-Dioxane	p-Dioxane	0.2	<0.2
2,2,4-Trimethylpentane	Isooctane	0.2	<0.2
4-Ethyltoluene	p-Ethyltoiuene	0.2	<0.2
Acetone	2-Propanone	0.2	<0.2
Allyl chloride	3-Chloropropene	0.2	<0.2
Bromodichloromethane	Dichlorobromomethane	0.2	<0.2
Bromoform	Tribromomethane	0.2	<0.2
Carbon disulfide	CS2	0.2	<0.2
Cyclohexane		0.2	<0.2
Dibromochloromethane	Chlorodibromoethane	0.2	<0.2
Ethyl acetate	Acetic ester	0.2	<0.2
Isopropyl alcohol	Isopropanol / 2-Propanol	0.2	<0.2
Methyl butyl ketone	MBK / 2-Hexanone	0.2	<0.2
Methyl ethyl ketone	MEK / 2-Butanone	0.2	<0.2
Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone	0.2	<0.2
Methyl tert-butyl ether	MTBE	0.2	<0.2
n-Heptane		0.2	<0.2
n-Hexane	Dramatana	0.2	<0.2
Propene	Propylene	0.2	<0.2
Tetrahydrofuran	THF	0.2	<0.2
trans-1,2-Dichloroethene Vinyl acetate	trans-1,2-Dichloroethylene	0.2 0.2	<0.2
Bromoethene	Acetic acid vinyl ester Vinyl bromide	0.2	<0.2
Benzyl chloride	a-Chlorotoluene	0.2	<0.2 <0.2
Ethanol	Ethyl alcohol	0.2	<0.2
Acetonitrile	Methyl cyanide	0.2	<0.2
Acrolein	2-Propenal	0.2	<0.2
Acrylonitrile	2-Propenal	0.2	<0.2
tert-Butyl alcohol	TBA	0.2	<0.2
2-Chloroprene	2-Chloro-1,3-butadiene	0.2	<0.2
Diisopropyl Ether	DIPE	0.2	<0.2
Ethyl tert-butyl ether	ETBE	0.2	<0.2
tert-Amyl methyl ether	TAME	0.2	<0.2
Methyl methacrylate	MMA	0.2	<0.2
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride	0.2	<0.2
Isopropylbenzene	Cumene	0.2	<0.2
2-Chlorotoluene	o-Chlorotoluene	0.2	<0.2
n-Propylbenzene	Phenyl propane	0.2	<0.2
tert-Butylbenzene	1,1-Dimethylethylbenzene	0.2	<0.2
sec-Butylbenzene	1-Methylpropylbenzene	0.2	<0.2
2-Isopropyltoluene	o-Cymene	0.2	<0.2
n-Butylbenzene	Phenyl butane	0.2	<0.2
Naphthalene	· · · · · · · · · · · · · · · · · · ·	0.2	<0.2
•		4. -	·

केंद्राकार्य स्वाहर अधिकारी स्वाहीका है (धारा वाहर

Canister No: 12642

Specified Purpose: USEPA TO15 (Extended Suite)

Ambient Air

Verification Date: Valid To (At least):

22-Jan-2018 ~

19-Feb-2018 ~ Verification File: 180122_06.D

Canister Type: Canister Size:

Entech Silonite - Summa Style

TOV

Last Stability Check: Next Check Scheduled: 08-Nov-2016 08-Nov-2018

Varificatio

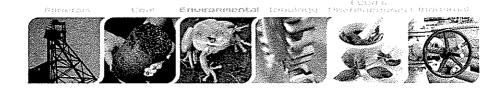
Analyst

Data Barışla

Walne Type: Dispetch Pressure:

wing FO.Go

Approved for Disputeh by:


Camister Verification Protocol

Caustes are verified in for purcosolfy the requested analyses and approximition (if known)
constant are verified mean according to the requirements of 1920 method 1935.

Sach verification involves a chiex for contamination, leaks and damage so values. Stability checks are performed align: years or if damage to the canteler in conserved, then every data years, within the designated holding directo ensure each canteler a capable of holding the target chamicals without a gnificant dagradation.

in a second of the second of t		Verification				
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result		
			ppbv	ppbv		
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform		0.2	<0.2		
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride		0.2	<0.2		
1,1,2-Trichloroethane	Vinyl trichtoride		0.2	<0.2		
1,1-Dichloroethane	Ethylidene chloride		0.2	<0.2		
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride		0.2	<0.2		
1,2-Dichloroethane	Ethylene chloride		0.2	<0.2		
1,2,4-Trimethylbenzene	Pseudocumene		0.2	<0.2		
1,2-Dibromoethane	EDB / Ethylene dibromide		0.2	<0.2		
1,2-Dichlorobenzene	o-Dichlorobenzene		0.2	<0.2		
1,2-Dichloropropane	Propylene dichloride		0.2	<0.2		
1,3,5-Trimethylbenzene	Mesitylene		0.2	<0.2		
1,3-Dichlorobenzene	m-Dichlorobenzene		0.2	<0.2		
1,4-Dichlorobenzene	p-Dichlorobenzene		0.2	<0.2		
Benzene	Cyclohexatriene		0.2	<0.2		
Bromomethane	Methyl bromide		0.2	<0.2		
Tetrachloromethane	Carbon tetrachloride		0.2	<0.2		
Chlorobenzene	Phenyl chloride		0.2	<0.2		
Chloroethane	Ethyl chloride		0.2	<0.2		
Chloroform	Trichloromethane		0.2	<0.2		
Chloromethane	Methyl chloride		0.2	<0.2		
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene		0.2	<0.2		
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene		0.2	<0.2		
Ethylbenzene	Phenyl ethane		0.2	<0.2		
Freon 12	Dichlorodifluoromethane		0.2	<0.2		
jon 11	Trichlorofluoromethane		0.2	<0.2		
Freon 113	1,1,2-Trichloro-1,2,2-trifluoroethane		0.2	<0.2		
Freon 114	1,2-Dichlorotetrafluoroethane		0.2	<0.2		
Hexachlorobutadiene	Hexachloro-1,3-Butadiene		0.2	<0.2		

·			Verification	
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result
			ppbv	ppbv
Dichloromethane	Methylene chloride		0.2	<0.2
m- & p-Xylene	1,3 & 1,4 -Dimethylbenzene		0.4	<0.4
o-Xylene	1,2-Dimethylbenzene		0.2	<0.2
Styrene	Vinyl benzene		0.2	<0.2
Tetrachloroethene	PCE / Perchlorethylene		0.2	<0.2
Toluene	Methyl Benzene		0.2	<0.2
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene		0.2	<0.2
Trichloroethene	TCE / Trichloroethylene		0.2	<0.2
Vinyl chloride	Chloroethene		0.2	<0.2
1,2,4-Trichlorobenzene	•		0.2	<0.2
1,3-Butadiene	Biethylene		0.2	<0.2
1,4-Dioxane	p-Dioxane		0.2	<0.2
2,2,4-Trimethylpentane	Isooctane		0.2	<0.2
4-Ethyltoluene	p-Ethyltoluene		0.2	<0.2
Acetone	2-Propanone		0.2	<0.2
Allyl chloride	3-Chloropropene		0.2	<0.2
Bromodichloromethane	Dichlorobromomethane		0.2	<0.2
Bromoform	Tribromomethane		0.2	<0.2
Carbon disulfide	CS2		0.2	<0.2
Cyclohexane	Chlorodibromoethane		0.2	<0.2
Dibromochloromethane			0.2	<0.2
Ethyl acetate	Acetic ester		0.2	<0.2
Isopropyl alcohol	Isopropanol / 2-Propanol MBK / 2-Hexanone		0.2 0.2	<0.2 <0.2
Methyl butyl ketone	MEK / 2-Butanone		0.2	<0.2
Methyl ethyl ketone Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone		0.2	<0.2
Methyl tert-bulyl ether	MTBE		0.2	<0.2
n-Heptane	MIDE		0.2	<0.2
n-Hexane			0.2	<0.2
Propene	Propylene		0.2	<0.2
Tetrahydrofuran	THE		0.2	<0.2
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene		0.2	<0.2
Vinyl acetate	Acetic acid vinyl ester		0.2	<0.2
Bromoethene	Vinyl bromide	·	0.2	<0.2
Benzyl chloride	g-Chlorotoluene		0.2	< 0.2
Ethanol	Ethyl alcohol		0.2	<0.2
Acetonitrile	Methyl cyanide		0.2	<0.2
Acrolein	2-Propenal		0.2	<0.2
Acrylonitrile	2-Propenenitrile		0.2	<0.2
tert-Butyl alcohol	TBA		0.2	<0.2
2-Chloroprene	2-Chloro-1,3-butadiene		0,2	<0.2
Diisopropyl Ether	DIPE		0.2	<0.2
Ethyl tert-butyl ether	ETBE		0.2	<0.2
tert-Amyl methyl ether	TAME		0.2	<0.2
Methyl methacrylate	MMA		0.2	<0.2
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride		0.2	<0.2
Isopropylbenzene	Cumene		0.2	<0.2
2-Chlorotoluene	o-Chlorotoluene		0.2	<0.2
n-Propylbenzene	Phenyl propane		0.2	<0.2
tert-Butylbenzene	1,1-Dimethylethylbenzene		0.2	<0.2
sec-Butylbenzene	1-Methylpropylbenzene		0.2	<0.2
2-Isopropyltoluene	o-Cymene		0.2	<0.2
n-Butylbenzene	Phenyl butane		0.2	<0.2
Naphthalene			0.2	<0.2

Sampler No:

1615

Specified Purpose: LORs Required:

USEPA TO15 (Extended Suite)

Ambient Air

Verification Date: Valid To (At least):

18-Jan-2018 15-Feb-2018

Passive Sampler

Verification File:

180118 07.D

Flow Rate Calibrated at:

ml/min

Analyst:

Dale Semple

Calibrated by:

Sampler Type:

17 18/1/18.

Approved for Dispatch by:

Samplers are persually sended for for purposel for the requested analyses and appropriations. similarity are certified clean according to the resourcements of 1555% method 1555%

Bath verification revolves without for contamination, leave and carriege or fittings

Target Compound	Alt. Name	Verified to	Result
		ppbv	ppbv
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform	0.2	<0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride	0.2	<0.2
1,1,2-Trichloroethane	Vinyl trichloride	0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride	0.2	<0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride	0.2	<0.2
1,2-Dichloroethane	Ethylene chloride	0.2	<0.2
1,2,4-Trimethylbenzene	Pseudocumene	0.2	<0.2
1,2-Dibromoethane	EDB / Ethylene dibromide	0.2	<0.2
1,2-Dichlorobenzene	o-Dichlorobenzene	0.2	<0.2
1,2-Dichloropropane	Propylene dichloride	0.2	<0.2
1,3,5-Trimethylbenzene	Mesitylene	0.2	<0.2
1,3-Dichlorobenzene	m-Dichlorobenzene	0.2	<0.2
1,4-Dichlorobenzene	p-Dichlorobenzene	0.2	<0.2
Benzene	Cyclohexatriene	0.2	<0.2
Bromomethane	Methyl bromide	0.2	<0.2
Tetrachloromethane	Carbon tetrachloride	0.2	<0.2
Chlorobenzene	Phenyl chloride	0.2	<0.2
Chloroethane	Ethyl chloride	0.2	<0.2
Chloroform	Trichloromethane	0.2	<0.2
Chloromethane	Methyl chloride	0.2	<0.2
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene	0.2	<0.2
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene	0.2	<0.2
Ethylbenzene	Phenyl ethane	0.2	<0.2
reon 12	Dichlorodifluoromethane	0.2	<0.2
Freon 11	Trichlorofluoromethane	0.2	<0.2
Freon 113	1,1,2-Trichloro-1,1,2-trifluoroethane	0.2	<0.2
Freon 114	1,2-Dichlorotetrafluoroethane	0.2	<0.2
Hexachlorobutadiene	Hexachloro-1,3-Butadiene	0.2	<0.2

RIGHT SOLUTIONS RIGHT PARTNER

Dichloromethane	Target Compound	Alt. Name	Verified to	Result	
Dichloromethane Methylene chloride 0.2 4.0.2	. a.got oompound	,			
m. Ap. JVjenne	Dichloromethane	Methylene chloride			
o-Xylene 1,2-Dimethylbenzene 0,2 <0,2	m -& p-Xylene	•		<0.4	
Styrene Viryl benzene 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	• •	•	0.2	<0.2	
Telrachloredhene PCE/Perchfordhylene 0.2 <0.2	-	·	0.2	<0.2	
Toluene trans-1,3-Dichforopropene 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	•		0.2	<0.2	
trans-1,3-Dichloropropiene trans-1,3-Dichloropropylene 0.2 <0.2 Trichlorotelhene D.2 <0.2	Toluene		0.2	<0.2	
Trichtoroethyene C.2 <0.2 Vinyl chloride Chloroethene 0.2 <0.2 1,2-4-Trichbrobenzene 0.2 <0.2 1,3-Buladiene Biethylene 0.2 <0.2 1,4-Dioxane p-Dioxane 0.2 <0.2 2,2-4-Trimethylperlane Isocitane 0.2 <0.2 Acetone 2-Propanone 0.2 <0.2 Acetone 2-Propanone 0.2 <0.2 Acetone 2-Propanone 0.2 <0.2 Acetone 2-Propanone 0.2 <0.2 Bromodicithromethane Dickhorboromethane 0.2 <0.2 Bromodicithromethane Dickhorboromethane 0.2 <0.2 Oydorbexane 0.2 <0.2 <0.2 Dibromochloromethane Chlorodibromoethane 0.2 <0.2 Scopropal acetale Acetic ester 0.2 <0.2 Elhyla scotale Acetic ester 0.2 <0.2 Methyl butyl ketone MSK / 2-Butanne 0.2 <0.2 </td <td>trans-1,3-Dichloropropene</td> <td>•</td> <td>0.2</td> <td><0.2</td>	trans-1,3-Dichloropropene	•	0.2	<0.2	
Vinyl chloride Chlorethene 0.2 <0.2 1,3.4-Trichiorobenzene 0.2 <0.2	·	· · · ·	0.2	<0.2	
1.3-Butadiene Biothylene 0.2 <0.2	Vinyl chloride		0.2	<0.2	
1,4-Dioxane	1,2,4-Trichlorobenzene	· •	0.2	<0.2	
1,4-Dioxane p-Dioxane 0.2 <0.2	1,3-Butadiene	Biethylene	0.2	<0.2	
4-Ethylkoluene p-Ethylkoluene 0.2 <0.2	1,4-Dioxane		0.2	<0.2	
Actorion 2-Propanone 0.2 <0.2 Allyl chloride 3-Chloropropene 0.2 <0.2	2,2,4-Trimethylpentane	Isooctane	0.2	<0.2	
Ally Ichoride 3-Chloropropene 0.2 <0.2	4-Ethyltoluene	p-Ethyltoluene	0.2	<0.2	
Ailyl chloride 3-Chloropropene 0.2 <0.2	Acetone		0.2	<0.2	
Bromoform Tribromomethane 0.2 <0.2 Carbon disulfide CS2 0.2 0.2 Cyclohexane 0.2 0.2 Dibromochloromethane Chlorodibromethane 0.2 -0.2 Ethyl acetate Acetic ester 0.2 -0.2 Boyropyl alcohol Isogropyal alcohol 0.2 -0.2 Methyl butyl ketone MBK / 2-Hexanone 0.2 -0.2 Methyl lethyl ketone MIBK / 2-Butanone 0.2 -0.2 Methyl isobutyl ketone MIBK / 2-Butanone 0.2 -0.2 Methyl itert-butyl ether MTBE 0.2 -0.2 Methyl isobutyl ketone MIBK / 4-Methyl-2-pentanone 0.2 -0.2 Methyl itert-butyl ether MTBE 0.2 -0.2 Methyl itert-butyl ether 0.2 -0.2 -0.2 Propene Propylene 0.2 -0.2 Tetrahydrofuran THF 0.2 -0.2 Tetrahydrofuran THF 0.2 -0.2 Tetrahydrofuran	Allyl chloride		0.2	<0.2	
Carbon disulfide CS2 <0.2 <0.2 Cyclohexane 0.2 <0.2	Bromodichloromethane		0.2	<0.2	
Cyclohexane Chlorodibromothane 0.2 <0.2 Dibromochloromethane 0.2 <0.2	Bromoform	Tribromomethane	0.2	<0.2	
Dibromochloromethane Chlorodibromoethane 0.2 <0.2 Ethyl acetate Acetic ester 0.2 <0.2	Carbon disulfide	CS2	0.2	<0.2	
Ethyl acctate Acetic ester 0.2 <0.2 lsopropal alcohol Isopropanol / 2-Propanol 0.2 <0.2	Cyclohexane		0.2	<0.2	
Isopropyl alcohol Isopropanol / 2-Propanol 0.2 <0.2	Dibromochloromethane	Chlorodibromoethane	0.2	<0.2	
Methyl butyk ketone MBK / 2-Hexanone 0.2 <0.2 Methyl ethyl ketone MEK / 2-Butanone 0.2 <0.2	Ethyl acetate	Acetic ester	0.2	<0.2	
Methyl butyl ketone MBK / 2-Hexanone 0.2 <0.2 Methyl iethyl ketone MEK / 2-Butanone 0.2 <0.2	Isopropyl alcohol	Isopropanol / 2-Propanol	0.2	<0.2	
Methyl isobutyl ketone MIBK / 4-Methyl-2-pentanone 0.2 <0.2 Methyl iert-butyl ether MTBE 0.2 <0.2			0.2	<0.2	
Methyl isobutyl ketone MIBK / 4-Methyl-2-pentanone 0.2 <0.2 Methyl iert-butyl ether MTBE 0.2 <0.2	Methyl ethyl ketone	MEK / 2-Butanone	0.2	<0.2	
Methyl tert-butyl ether MTBE 0.2 <0.2 n-Heptane 0.2 <0.2		MIBK / 4-Methyl-2-pentanone	0.2	<0.2	
n-Heptane 0.2 <0.2			0.2	<0.2	
n-Hexane Propylene 0.2 <0.2 Propene Propylene 0.2 <0.2			0.2	<0.2	
Tetrahydrofuran THF 0.2 <0.2 trans-1,2-Dichloroethene trans-1,2-Dichloroethylene 0.2 <0.2			0.2	<0.2	
Tetrahydrofuran THF 0.2 <0.2 trans-1,2-Dichloroethene trans-1,2-Dichloroethylene 0.2 <0.2	Propene	Propylene			
trans-1,2-Dichloroethene trans-1,2-Dichloroethylene 0.2 <0.2 Vinyl acetate Acetic acid vinyl ester 0.2 <0.2	Tetrahydrofuran	· · · · · · · · · · · · · · · · · · ·	0.2	<0.2	
Vinyl acetate Acetic acid vinyl ester 0.2 <0.2 Bromoethene Vinyl bromide 0.2 <0.2		trans-1,2-Dichloroethylene			
Bromoethene Vinyl bromide 0.2 <0.2 Benzyl chloride a-Chlorotoluene 0.2 <0.2		•	0.2	<0.2	
Benzyl chloride a-Chlorotoluene 0.2 <0.2	•	•	0.2	<0.2	
Ethanol Ethyl alcohol 0.2 <0.2 Acetonitrile Methyl cyanide 0.2 <0.2	Benzyl chloride	·		< 0.2	
Acetonitrile Methyl cyanide 0.2 <0.2 Acrolein 2-Propenal 0.2 <0.2		Ethyl alcohol			
Acrolein 2-Propenal 0.2 <0.2	Acetonitrile	· ·	0.2	<0.2	
Acrylonitrile 2-Propenenitrile 0.2 <0.2	Acrolein	• •	0.2	<0.2	
tert-Butyl alcohol TBA 0.2 <0.2 2-Chloroprene 2-Chloro-1,3-butadiene 0.2 <0.2	Acrylonitrile		0.2	<0.2	
2-Chloroprene 2-Chloro-1,3-butadiene 0.2 <0.2			0.2	<0.2	
Diisopropyl Ether DIPE 0.2 <0.2 Ethyl tert-butyl ether ETBE 0.2 <0.2		2-Chloro-1,3-butadiene	0.2	<0.2	
Ethyl tert-butyl ether ETBE 0.2 <0.2 tert-Amyl methyl ether TAME 0.2 <0.2	•		0.2	<0.2	
tert-Amyl methyl ether TAME 0.2 <0.2 Methyl methacrylate MMA 0.2 <0.2	- · · ·	ETBE	0.2	<0.2	
Methyl methacrylate MMA 0.2 <0.2 1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 0.2 <0.2	•	TAME	0.2	<0.2	
1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 0.2 <0.2		MMA		<0.2	
Isopropylbenzene Cumene 0.2 <0.2 2-Chlorotoluene 0.2 <0.2				<0.2	
2-Chlorotoluene 0.2 <0.2	Isopropylbenzene		0.2	<0.2	
n-Propylbenzene Phenyl propane 0.2 <0.2 tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2 <0.2		o-Chlorotoluene	0.2	<0.2	
tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2 <0.2 sec-Butylbenzene 1-Methylpropylbenzene 0.2 <0.2 <2-isopropyltoluene 0.2 <0.2 co.2 co.2 co.2 co.2 co.2 co.2 co.2 co					
sec-Butylbenzene1-Methylpropylbenzene0.2<0.22-Isopropyltoluene0-Cymene0.2<0.2	• •				
2-Isopropyltoluene o-Cymene 0.2 <0.2 n-Butylbenzene Phenyl butane 0.2 <0.2					
n-Butylbenzene Phenyl butane 0.2 <0.2	· · · · · · · · · · · · · · · · · · ·	* * * * *			
		- · · · · · · · · · · · · · · · · · · ·			

CERTIFICATE OF ANALYSIS

Work Order : EN1801845

: ECOTECH PTY LTD

Contact : LARA NICHOLAS

Address : 1492 FERNTREE GULLY ROAD

KNOXFIELD VICTORIA, AUSTRALIA 3180

Telephone : +61 03 9730 7800
Project : WD4 PRIMULA AVE

Order number : 234215

C-O-C number : ----

Client

Sampler : DANIEL RAYMOND

Site : ---

Quote number : NE/070/17

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 4

Laboratory : Environmental Division Newcastle

Contact : Hayley Withers

Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

Telephone : +612 4014 2500

Date Samples Received : 28-Feb-2018 11:35

Date Analysis Commenced : 05-Mar-2018

Issue Date : 07-Mar-2018 13:45

ISO/IEC 1702

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Daniel Junek Senior Air Analyst Newcastle - Organics, Mayfield West, NSW

Daniel Junek Senior Air Analyst Newcastle, Mayfield West, NSW

Page : 2 of 4
Work Order : EN1801845

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP101: Results reported in μg/m³ are calculated from PPBV results based on a temperature of 25°C and atmospheric pressure of 101.3 kPa.
- CAN-001: Results for Pressure As Received are measured under controlled conditions using calibrated laboratory gauges. These results are expressed as an Absolute Pressure. Equivalent gauge pressures may be calculated by subtracting the Pressure Laboratory Atmosphere taken at the time of measurement.
- CAN-001: Results for Pressure Gauge as Received are obtained from uncalibrated field gauges and are indicative only. These results may not precisely match calibrated gauge readings and may vary from field measurements due to changes in temperature and pressure

Page : 3 of 4
Work Order : EN1801845

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Analytical Results

Sub-Matrix: AIR (Matrix: AIR)		Clie	ent sample ID	140218 C4985_S2843	200218 C12643_S2824	 	
	Cli	ient sampli	ng date / time	14-Feb-2018 00:00	20-Feb-2018 00:00	 	
Compound	CAS Number	LOR	Unit	EN1801845-001	EN1801845-002	 	
				Result	Result	 	
EP101: VOCs by USEPA Method TO	15 (Calculated Conce	entration)					
Benzene	71-43-2	1.6	μg/m³	<1.6	<1.6	 	
Toluene	108-88-3	1.9	µg/m³	3.4	5.6	 	
Ethylbenzene	100-41-4	2.2	μg/m³	<2.2	<2.2	 	
meta- & para-Xylene	108-38-3 106-42-3	4.3	μg/m³	<4.3	<4.3	 	
ortho-Xylene	95-47-6	2.2	μg/m³	<2.2	<2.2	 	
Naphthalene	91-20-3	2.6	μg/m³	<2.6	<2.6	 	
Total Xylenes		6.6	μg/m³	<6.6	<6.6	 	
EP101: VOCs by USEPA Method TO	15r						
Benzene	71-43-2	0.5	ppbv	<0.5	<0.5	 	
Toluene	108-88-3	0.5	ppbv	0.9	1.5	 	
Ethylbenzene	100-41-4	0.5	ppbv	<0.5	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	1.0	ppbv	<1.0	<1.0	 	
ortho-Xylene	95-47-6	0.5	ppbv	<0.5	<0.5	 	
Naphthalene	91-20-3	0.5	ppbv	<0.5	<0.5	 	
Total Xylenes		1.5	ppbv	<1.5	<1.5	 	
Sampling Quality Assurance							
Pressure - As received	PRESSURE	0.1	kPaa	83.4	84.5	 	
Pressure - Gauge as Received		1	Inches Hg	-6	-6	 	
Pressure - Laboratory Atmosphere		0.1	kPaa	101	101	 	
Temperature as Received		0.1	°C	21.0	21.0	 	
USEPA Air Toxics Method TO15r Su	ırrogates						
4-Bromofluorobenzene	460-00-4	0.5	%	104	105	 	

Page : 4 of 4
Work Order : EN1801845

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Surrogate Control Limits

Sub-Matrix: AIR	Recovery Limits (%)			
Compound	CAS Number	Low	High	
USEPA Air Toxics Method TO15r Surrogates				
4-Bromofluorobenzene	460-00-4	60	140	

QUALITY CONTROL REPORT

· EN1801845 Work Order

Page : 1 of 3

Client : ECOTECH PTY LTD Laboratory : Environmental Division Newcastle

Contact : LARA NICHOLAS Contact : Hayley Withers

> Address : 1492 FERNTREE GULLY ROAD : 5/585 Maitland Road Mayfield West NSW Australia 2304

> > : +612 4014 2500

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

KNOXFIELD VICTORIA. AUSTRALIA 3180 Telephone : +61 03 9730 7800 Telephone

: WD4 PRIMULA AVE Project Date Samples Received : 28-Feb-2018

Order number : 234215 **Date Analysis Commenced** : 05-Mar-2018 · 07-Mar-2018 Issue Date

C-O-C number Sampler : DANIEL RAYMOND

Site

No. of samples analysed : 2

: NE/070/17

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

: 2

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report; Recovery and Acceptance Limits

Signatories

Quote number

No. of samples received

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Daniel Junek Senior Air Analyst Newcastle - Organics, Mayfield West, NSW

Daniel Junek Senior Air Analyst Newcastle, Mayfield West, NSW Page : 2 of 3 Work Order : EN1801845

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: AIR			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound CAS Number			Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP101: VOCs by USEPA Method TO15r (QC Lot: 1472194)									
EN1801845-001	140218 C4985_S2843	EP101-H: Benzene	71-43-2	0.5	ppbv	<0.5	<0.5	0.00	No Limit
		EP101-H: Toluene	108-88-3	0.5	ppbv	0.9	0.9	0.00	No Limit
		EP101-H: Ethylbenzene	100-41-4	0.5	ppbv	<0.5	<0.5	0.00	No Limit
		EP101-H: ortho-Xylene	95-47-6	0.5	ppbv	<0.5	<0.5	0.00	No Limit
		EP101-H: meta- & para-Xylene	108-38-3	1	ppbv	<1.0	<1.0	0.00	No Limit
			106-42-3						

Page : 3 of 3 Work Order : EN1801845

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control terms Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (DCS) refers to certified reference materials, or known interference free matrices spiked with target analytes. The purpose of these QC parameters are to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS and DCS.

Sub-Matrix: AIR			Method Blank (MI	B) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPD	Os (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP101: VOCs by USEPA Method TO15r	EP101: VOCs by USEPA Method TO15r (QCLot: 1472194)										
EP101-H: Benzene	71-43-2	0.5	ppbv	<0.5	100 ppbv	103	96.1	77	114	25	25
EP101-H: Toluene	108-88-3	0.5	ppbv	<0.5	100 ppbv	106	102	78	115	25	25
EP101-H: Ethylbenzene	100-41-4	0.5	ppbv	<0.5	100 ppbv	103	94.1	82	121	25	25
EP101-H: meta- & para-Xylene	108-38-3	1	ppbv	<1.0	200 ppbv	106	95.2	82	122	25	25
	106-42-3										
EP101-H: ortho-Xylene	95-47-6	0.5	ppbv	<0.5	100 ppbv	102	89.0	83	122	25	25

[•] No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EN1801845** Page : 1 of 4

Client : ECOTECH PTY LTD Laboratory : Environmental Division Newcastle

Contact: LARA NICHOLASTelephone: +612 4014 2500Project: WD4 PRIMULA AVEDate Samples Received: 28-Feb-2018Site: ----Issue Date: 07-Mar-2018

Sampler : DANIEL RAYMOND No. of samples received : 2
Order number : 234215 No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4
Work Order : EN1801845

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: AIR

Evaluation: **x** = Holding time breach : ✓ = Within holding time.

WICH PAIR				Lvalaation	. Holding time	broadin, Trian	in noiding tim
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP101: VOCs by USEPA Method TO15r							
Summa style Canister - ALS Supplied Silonite (EP101-H) 140218 - C4985_S2843	14-Feb-2018				05-Mar-2018	16-Mar-2018	✓
Summa style Canister - ALS Supplied Silonite (EP101-H) 200218 - C12643_S2824	20-Feb-2018				05-Mar-2018	22-Mar-2018	✓
Sampling Quality Assurance							
Summa style Canister - ALS Supplied Silonite (CAN-001) 140218 - C4985_S2843	14-Feb-2018				05-Mar-2018	14-Feb-2019	✓
Summa style Canister - ALS Supplied Silonite (CAN-001) 200218 - C12643 S2824	20-Feb-2018				05-Mar-2018	20-Feb-2019	1

Page : 3 of 4
Work Order : EN1801845

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: AIR		Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification								
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification			
Analytical Methods	Method	QC	Regular	gular Actual Expected Evaluation		Evaluation				
Duplicate Control Samples (DCS)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Laboratory Duplicates (DUP)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Laboratory Control Samples (LCS)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Method Blanks (MB)										
Hydrocarbons in Air by USEPA TO15	FP101-H	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard			

Page : 4 of 4 Work Order : EN1801845

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Canister Sampling - Field Data	CAN-001	AIR	In house: Referenced to USEPA TO14 / TO15
Hydrocarbons in Air by USEPA TO15	EP101-H	AIR	In house: Referenced to USEPA TO15r Volatile Organic Compounds in Air by USEPA TO15. Aliphatic and Aromatic Hydrocarbons
Hydrocarbons in Air by USEPA TO15 (mass/volume)	EP101-H-MV	AIR	In house: Referenced to USEPA TO15r Hydrocarbons in Air by USEPA TO15 (Calculated Concentration)

AIR CANISTER CHAIN OF CUSTODY

Client Supplied Canister(s)?

Q-480LAGE DI Burme Road Peerska SA,5035 Pn: 88 8359 0850 E, adem de(frejopped pr.m.

Disestable Educi Steel Staffor File 4963 Pm 07 1723 7327 E. Ambelia onschrieblishististic m If sourced from an ALS Laboratory: please tick → GGL#B170WE 46 Calemondar Drive Direct GLD 4895 For 07 7191 5669 1, gadstone@arsystna.com UMACKA: Palearbour Road Mackay Of Fb. 67-594-0177 E mackay@basarosic

DMELBOURNE SLA Coestas Road Spring Pr. GD 0549 9690 E. Gampley Methodroes DIGUSORE 109 Sydney Rose Mungee Pt: 00:1312 6773 E. Hydraed madde spradding

Item: APYG00762307 Parcels OffPeak TROME: APY GOOD OZ JOY:

which is now the minimum management of the minimum management of the minimum

CLIENT: ECOTECH	TURNAROUND REQUIREMENTS :	☐ Standard TAT (Lis	st due date):			LABORATOR	Y USE ONL	Y (Circle) Receiver to initial i	
	(Standard TAT may be extended for multiple sequential analysis suites)	☐ Non Standard or u	urgent TAT (LI	st due date):		Custody Seal in	aci? Recil	15 million and Luck Debut Associated Personal Particles	N/
PROJECT: WD4 PRIMULA AVE	ALS QUOTE NO.: NE/070/17			COC SEQUENCE	NUMBER (Circle	Valves closed of Receipt?	n Reci	abY/N NEDN	N/
PURCHASE ORDER NC 234215	COUNTRY OF ORIGIN:		coc:	$\begin{pmatrix} 1 \end{pmatrix}$ 2 3	4 5 6	7 Canister/Sample	r Complete an	d Not Demaged Y	es N
PROJECT MANAGER: Lara Nicholas . CON	TACT PH: 03 9370 7845 0417351053		OF:	(1) 2 3	4 5 6	7 Other comment:		Temperature to.	
SAMPLER: Daniel Raymond SAMI	PLER MOBILE: 0419424932	RELINQUISHED BY:		RELINQUISHED	BY:	RELINQUISHED BY	/ ;	RELINQUISHED B	γ:
COC Emailed to ALS? (YES / NO) EDD	FORMAT (or default);		Signature and detailine	Kall	Signature and data/tin		Signature and datatime	P	ture and dated
Email Reports to (will default to PM if no other addresses are listed): lara.nicholas@ecotech.com, daniel.raym	ond@ecotech.com	RECEIVED BY:	•	RECEIVED BY:		RECEIVED BY:	-	RECEIVED BY:	ure and belen
Ernail Invoice to (will default to PM if no other addresses are listed): naomi.dans@ecotech.com			Signature and detellimen	28-2-18	11-35 Signature and defeating	78	Signature and data/time	Sinon	ture and dated
								Cigne	

	GAS SAMP	LE CONTAINER INFORM	IATION			er Gauge Ires (PSI)		to Canister for pressu					ANA	LYSES	REQUE	STED		Additi	onal Inform	atior
		CANISTER / SAMPLE DETAILS					Re	porting	g Req	uirem	ents	Su	ite Codes	must be lis	ted to attra	ct suite pric	:е	1		
CANISTER SERIAL NO		CLIENT SAMPLE ID	DATE / TIME SAMPLED	MATRIX (eg Air, Soil Gas)	Pre- Sampling	Post Sampling		LORS Soil Gas (NEPM)		ppbv,	ppmv,	VI-V1 BTEXN						hazards, likely	on LORs required, y contaminant levels ific QC analysis etc.	or sami
4985	2843	140218	14/02/18 00:30 - 23:30	AIR	30	4	X	(NEPM)	indoor	μg/m°	mg/m³	×				<u> </u>		rout	tine method LOR after dilution)
12643	2824	200218	20/02/18 00:30 - 23:30	AIR	30	4	х		-	х		х .	÷							
																-				
															-					
																	1			
																		ronmenta castle	al Division	
													-				W	ork Order f	Reference 01845	
													, ,,		-	 -		INIO	01043	
																				,
					:															
		,												1		 	Tolepho	one:+61240)14 25 00	

ENFM (204A/2)

Form Page 1 of 1

Inquiries: Client Services - Newcastle Phone: +61 (02) 4014 2500

E-mail: samples.newcastle@alsenviro.com

Client / Office:	ECOTECH	ALS Use ONLY
Contact:	Lara Nicholas	Request Received By: HW
Telephone:	03 9730 7800	Deliver By: asap
ALS Quotation:	NE/070/17	Dispatched By: asap
Delivery Address:	1492 Ferntree Gully Rd	Workorder:
	Knoxfield VIC 3180	Agreed Rent Free Period: 14 day

SPECIAL INSTRUCTIONS: PLEASE EMAIL CLEAN CERTIFICATES TO LARA NICHOLAS ON DISPATCH ...

Air Sampling Equipment Request

CAN	ISTERS	State of the state	Military.		grave # 2 h	100						1
I Constitution									A	nalysis hiitim	ļs & Da	ete:
Nos	Canister Type 4 1		Size	Gauge	Valve	Cap.	Rental	No Returnet	Leak Checked	Certifi	ed Q	ĸ.
3	Entech Silonite Canister	/Summa TM 1	61	Vec	9	Yes	\$200.00		W.	00	11	ΤŠ

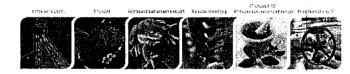
CONNECTORS AND FLOW CONTROL DEVICES

Salan Salatra	No	Equipment Type	Duration:	Flow T-	(Gauge	Certified	Sealed /₄. Vacuum €	Connection Q Quick Connect S Swagelok	No. Returned	, Rental ¹
L	3	Passive Sampler -TWA	24hr	No	Yes	Yes	Yes / No	s		Incl Above
		Flow Sampler Caps		No	No	No	Yes / No			\$20 ea. Replacement
		ECOTECH Autosampler		No	No	No	Yes / No			N/A
		1/4" Swagelok connectors and ferrules (spares)	-				-			\$5 ea. Replacement

Vother (specify) 3 x ecotech sampling timers

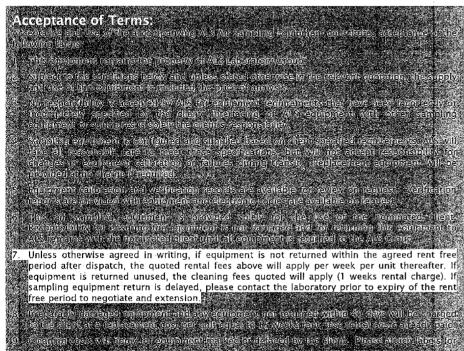
'Refer to Acceptance of Terms + 3 x male blocking nuts, + 3 x female blocking nuts.

ALS use only	
Sampling Guide Included (Y / N) Packed by:	Dispatch Time / Date V 24118
Number of Boxes: 2	Consignment Note Number: 9802 1108 9316
Courier / Dispatcher: TNT	Consignment Dispatched by:


AIR SAMPLING FOURMENT

ALS SUPPLIED EQUIPMENT

ltem	Quantity	Item Description	Serial Nos
	3	6L Silonite Summa™ canister	4985 Rec 281 12642 V Rect 16/21
in	3	Passive Sampler – TWA – 24hr	1615 2824 2843


PROPER SERLITARIES

AIR SAMPLING FOLLIPMENT

DISPATE OF RECORDS

If these conditions are not acceptable please return all equipment to ALS Newcastle immediately.

EQUIPMENT SUPPLY AND LOGISTICS

Additional air sampling equipment can be ordered through any ALS Environmental Laboratory and supplied direct to your site or office by courier. For the fastest turnaround, equipment should be returned direct to Newcastle Laboratory.

ALS Environmental, Newcastle 5/585 Maitland Road Mayfield West, NSW 2304

Note that Dangerous Goods Transport Regulations may apply after sampling if the air cylinders are pressurised or contain hazardous materials.

ENFMCDR1.1 11-06-1

RIGHT SELLTRIFFS

Eistane - Adelaide - Bendago - Couberra - Geologi - Glabitone - Molloourie Ecorarby - Molloourie Góringolal - Mudgee - Hercardis - Horra - Petit - Wollongong - Sydney - Textusulle - Tornisjon - Waspanni WWW.BISCHOURE - 1

Original Carlotter in the Capital Carlotter

Canister No: 4985

Specified Purpose: USEPA TO15 (Extended Suite)

Ambient Air

Verification Date: Valid To (At least): 24-Jan-2018 < 21-Feb-2018

Verification File: 180123_23.D

Canister Type: Entech Silonite - Summa Style

Canister Size: Value Type: 10/2 Diografich Pressure: -color poin Last Stability Check: Next Check Scheduled: 03-Jul-2017 03-Jul-2019

Anahat Approved for Dispulsin by:

Dain Sanga

Carristers Medification Protocol.

Consters are verted for for surpose for the reconstant analysis and applications of screens, for most explications considers are verted about a constant to the reconstant of USPA method TCLS.

Each restrication implyes a check for contamination, least and damage to valves, trability thesis are performed after 5 assura or of damage to the carester in supported, then every two years, within the designated holding time to ansura outh carester is rapidly of holding time to ansura outh

No. 4			Verification	
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result
			ppbv	ppbv
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform		0.2	<0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride		0.2	<0.2
1,1,2-Trichloroethane	Vinyl trichloride		0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride		0.2	<0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride		0.2	<0.2
1,2-Dichloroethane	Ethylene chloride		0.2	<0.2
1,2,4-Trimethylbenzene	Pseudocumene		0.2	<0.2
1,2-Dibromoethane	EDB / Ethylene dibromide		0.2	<0.2
1,2-Dichlorobenzene	o-Dichlorobenzene		0.2	<0.2
1,2-Dichloropropane	Propylene dichloride		0.2	<0.2
1,3,5-Trimethylbenzene	Mesitylene		0.2	<0.2
1,3-Dichlorobenzene	m-Dichlorobenzene		0.2	<0.2
1,4-Dichlorobenzene	p-Dichlorobenzene		0.2	<0.2
Benzene	Cyclohexatriene		0.2	<0.2
Bromomethane	Methyl bromide		0.2	<0.2
Tetrachloromethane	Carbon tetrachloride		0.2	<0.2
Chlorobenzene	Phenyl chloride		0.2	<0.2
Chloroethane	Ethyl chloride		0.2	<0.2
Chloroform	Trichloromethane		0.2	<0.2
Chloromethane	Methyl chloride		0.2	<0.2
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene		0.2	<0.2
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene		0.2	<0.2
Ethylbenzene	Phenyl ethane		0.2	<0.2
Freon 12	Dichlorodifluoromethane		0.2	<0.2
ূ ্ৰী 11	Trichlorofluoromethane		0.2	<0.2
reon 113	1,1,2-Trichloro-1,2,2-trifluoroethane		0.2	<0.2
Freon 114	1,2-Dichlorotetrafluoroethane		0.2	<0.2
Hexachlorobutadiene	Hexachloro-1,3-Butadiene		0.2	<0.2

			Verification	te a renerin est
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result
.a.get Jempeana	, <u>-</u>		ppbv	ppbv
Dichloromethane	Methylene chloride		0.2	<0.2
m- & p-Xylene	1,3 & 1,4 -Dimethylbenzene		0.4	< 0.4
o-Xylene	1,2-Dimethylbenzene		0.2	<0.2
Styrene	Vinyl benzene		0.2	<0.2
Tetrachloroethene	PCE / Perchlorethylene		0.2	<0.2
Toluene	Methyl Benzene		0.2	<0.2
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene		0.2	<0.2
Trichloroethene	TCE / Trichloroethylene		0.2	< 0.2
Vinyl chloride	Chloroethene		0.2	< 0.2
1,2,4-Trichlorobenzene	•		0.2	< 0.2
1,3-Butadiene	Biethylene		0.2	< 0.2
1,4-Dioxane	p-Dioxane		0.2	<0.2
2,2,4-Trimethylpentane	Isooctane		0.2	<0.2
4-Ethyltoluene	p-Ethyltoluene		0.2	< 0.2
Acetone	2-Propanone		0.2	< 0.2
Allyl chloride	3-Chloropropene		0.2	<0.2
Bromodichloromethane	Dichlorobromomethane		0.2	< 0.2
Bromoform	Tribromomethane		0.2	<0.2
Carbon disulfide	CS2		0.2	<0.2
Cyclohexane			0.2	<0.2
Dibromochloromethane	Chlorodibromoethane		0.2	<0.2
Ethyl acetate	Acetic ester		0.2	<0.2
Isopropyl alcohol	Isopropanol / 2-Propanol		0.2	<0.2
Methyl butyl ketone	MBK / 2-Hexanone		0.2	<0.2
Methyl ethyl ketone	MEK / 2-Butanone		0.2	<0.2
Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone		0.2	<0.2
Methyl tert-butyl ether	MTBE		0.2	<0.2
n-Heptane			0.2	<0.2
n-Hexane			0.2	<0.2
Propene	Propylene		0.2	<0.2
Tetrahydrofuran	THF		0.2	<0.2
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene		0.2	<0.2
Vinyl acetate	Acetic acid vinyl ester		0.2	<0.2
Bromoethene	Vinyl bromide		0.2	<0,2
Benzyl chloride	a-Chlorotaluene		0.2	<0.2
Ethanol	Ethyl alcohol		0.2	<0.2
Acetonitrile	Methyl cyanide		0.2	<0.2
Acrolein	2-Propenal		0.2	<0.2
Acrylonitrile	2-Propenenitrile		0.2	<0.2
tert-Butyl alcohol	TBA		0.2	<0.2
2-Chloroprene	2-Chloro-1,3-butadiene		0.2	<0.2
Diisopropyl Ether	DIPE		0.2	<0.2
Ethyl tert-butyl ether	ETBE		0.2	<0.2
tert-Amyl methyl ether	TAME		0.2	<0.2
Methyl methacrylate	MMA		0.2	<0.2
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride		0.2	<0.2
Isopropylbenzene	Cumene		0.2	<0.2
2-Chlorotoluene	a-Chlorotoluene		0.2	<0.2
n-Propylbenzene	Phenyl propane		0.2	<0.2
tert-Butylbenzene	1,1-Dimethylethylbenzene		0.2	<0.2
sec-Butylbenzene	1-Methylpropylbenzene		0.2	<0.2
2-Isopropyltoluene	o-Cymene		0.2	<0.2
n-Butylbenzene	Phenyl butane		0.2	<0.2
Naphthalene			0.2	<0.2

Sampler No:

2843

Specified Purpose:

USEPA TO15 (Extended Suite)

LORs Required: Sampler Type:

Ambient Air

Passive Sampler

Verification Date: Valid To (At least): Verification File:

19-Jan-2018 ~ 16-Feb-2018 180119_04.D

Flow Rate Calibrated at:

ml/min

Analyst:

Dale Semple

Calibrated by:

MS 18/1/18

Approved for Dispatch by:

Samples Verification Protocol. Surportan provide verted fitte purpost to the requested and see proportions surples are verted demaccoding to the requirements of DSEA nation TOTS.

inch certification (nucleus, archera fira comannication, leaks and daintige to datings

Target Compound	Alt. Name	Verified to	Result
		ppbv	ppbv
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform	0.2	<0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride	0.2	<0.2
1,1,2-Trichloroethane	Vinyl trichloride	0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride	0.2	<0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride	0.2	<0.2
1,2-Dichloroethane	Ethylene chloride	0.2	<0.2
1,2,4-Trimethylbenzene	Pseudocumene	0.2	<0.2
1,2-Dibromoethane	EDB / Ethylene dibromide	0.2	<0.2
1,2-Dichlorobenzene	o-Dichlorobenzene	0.2	<0.2
1,2-Dichloropropane	Propylene dichloride	0.2	<0.2
1,3,5-Trimethylbenzene	Mesitylene	0.2	<0.2
1,3-Dichlorobenzene	m-Dichlorobenzene	0.2	<0.2
1,4-Dichlorobenzene	p-Dichlorobenzene	0.2	<0.2
Benzene	Cyclohexatriene	0.2	<0.2
Bromomethane	Methyl bromide	0.2	<0.2
Tetrachloromethane	Carbon tetrachloride	0.2	<0.2
Chlorobenzene	Phenyl chloride	0.2	<0.2
Chloroethane	Ethyl chloride	0.2	<0.2
Chloroform	Trichloromethane	0.2	<0.2
Chloromethane	Methyl chloride	0.2	<0.2
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene	0.2	<0.2
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene	0.2	<0.2
Ethylbenzene	Phenyl ethane	0.2	<0.2
reon 12	Dichlorodifluoromethane	0.2	<0.2
Freon 11	Trichlorofluoromethane	0.2	<0.2
Freon 113	1,1,2-Trichloro-1,1,2-trifluoroethane	0.2	<0.2
Freon 114	1,2-Dichlorotetrafluoroethane	0.2	<0.2
Hexachlorobutadiene	Hexachloro-1,3-Butadiene	0.2	<0.2

MUNT SULLYIONS HORE PARTNER

Target Compound	Alt. Name	Verified to	Result
		ppbv	ppbv
Dichloromethane	Methylene chloride	0.2	<0.2
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene	0.4	<0.4
o-Xylene	1,2-Dimethylbenzene	0.2	<0.2
Styrene	Vinyl benzene	0.2	<0.2
Tetrachloroethene	PCE / Perchlorethylene	. 0.2	<0.2
Toluene	Methyl Benzene	0.2	<0.2
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene	0.2	<0.2
Trichloroethene	TCE / Trichloroethylene	0.2	<0.2
Vinyl chloride	Chloroethene	0.2	<0.2
1,2,4-Trichlorobenzene	·	0.2	<0.2
1,3-Butadiene	Biethylene	0.2	<0.2
1,4-Dioxane	p-Dioxane	0.2	<0.2
2,2,4-Trimethylpentane	Isooctane	0.2	<0.2
4-Ethyltoluene	p-Ethyltoluene	0.2	<0.2
Acetone	2-Propanone	0.2	<0.2
Allyl chloride	3-Chloropropene	0.2	<0.2
Bromodichloromethane	Dichlorobromomethane	0.2	<0.2
Bromoform	Tribromomethane	0.2	<0.2
Carbon disulfide	CS2	0.2	<0.2
Cyclohexane		0.2	<0.2
Dibromochloromethane	Chlorodibromoethane	0.2	<0.2
Ethyl acetate	Acetic ester	0.2	<0.2
Isopropyl alcohol	Isopropanol / 2-Propanol	0.2	<0.2
Methyl butyl ketone	MBK / 2-Hexanone	0.2	<0.2
Methyl ethyl ketone	MEK / 2-Butanone	0.2	<0.2
Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone	0.2	<0.2
Methyl tert-butyl ether	MTBE	0.2	< 0.2
n-Heptane		0.2	<0.2
n-Hexane		0.2	<0.2
Propene	Propylene	0.2	<0.2
Tetrahydrofuran	THE	0.2	<0.2
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene	0.2	<0.2
Vinyl acetate	Acetic acid vinyl ester	0.2	<0.2
Bromoethene	Vinyl bromide	0.2	<0.2
Benzyl chloride	g-Chlorotoluene	0.2	<0.2
Ethanol	Ethyl alcohol	0.2	<0.2
Acetonitrile	Methyl cyanide	0.2	<0.2
Acrolein	2-Propenal	0.2	<0.2
Acrylonitrile	2-Propenenitrile	0.2	<0.2
tert-Butyl alcohol	TBA	0.2	<0.2
2-Chloroprene	2-Chloro-1,3-butadiene	0.2	<0.2
Diisopropyl Ether	DIPE	0.2	<0.2
Ethyl tert-butyl ether	ETBE	0.2	<0.2
tert-Amyl methyl ether	TAME	0.2	<0.2
Methyl methacrylate	MMA	0.2	<0.2
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride	0.2	<0.2
Isopropylbenzene	Cumene	0.2	<0.2
2-Chlorotoluene	o-Chlorotoluene	0.2	<0.2
n-Propylbenzene	Phenyl propane	0.2	<0.2
tert-Butylbenzene	1,1-Dimethylethylbenzene	0.2	<0.2
sec-Butylbenzene	1-Methylpropylbenzene	0.2	<0.2
2-Isopropyltoluene	o-Cymene	0.2	<0.2
n-Butylbenzene	Phenyl butane	0.2	<0.2
Naphthalene	i nonyi betano	0.2	<0.2
- topi is tolorio		0.2	-0.2

nipring valeties die ne Kareteie e

Canister No:

12643

Specified Purpose:

USEPA TO15 (Extended Suite)

Ambient Air

Verification Date: Valid To (At least): 02-Feb-2018 ~ 02-Mar-2018 /

Verification File:

180202_19.D

Canister Type: Canister Size:

Entech Silonite - Summa Style

Valve Type:

6L

TOV

Dispatch Pressure:

<0.01 psia

Last Stability Check:

Next Check Scheduled:

30-Jun-2016 30-Jun-2018 K. Geldermap

Analyst:

Approved for Dispatch by:

Canisters are vertied for forpose for the requested analysis and applications lifenower. For most applications, constant and confist chair according to the resonantents of LSEP4 method COTS

Each vestication involves a check for contamination, issue and damage to value. Stability chacks are performed after voors or C durage to the constant in suspected, then every last evers, within the devictored holding time to ensure ex-consists is consisted finished between the recommendations of participation.

N		Verification				
Target Compound	Ait. Name	Qualifiers	Goal (<)	Result		
			ppbv	ppbv		
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform		0.2	<0.2		
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride		0.2	<0.2		
1,1,2-Trichloroethane	Vinyl trichloride		0.2	<0.2		
1,1-Dichloroethane	Ethylidene chloride		0.2	<0.2		
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride		0.2	<0.2		
1,2-Dichloroethane	Ethylene chloride		0.2	<0.2		
1,2,4-Trimethylbenzene	Pseudocumene		0.2	<0.2		
1,2-Dibromoethane	EDB / Ethylene dibromide		0.2	<0.2		
1,2-Dichlorobenzene	o-Dichlorobenzene		0.2	<0.2		
1,2-Dichloropropane	Propylene dichloride		0.2	<0.2		
1,3,5-Trîmethylbenzene	Mesitylene		0.2	<0.2		
1,3-Dichlorobenzene	m-Dichlorobenzene		0.2	<0.2		
1,4-Dichlorobenzene	p-Dichlorobenzene		0.2	<0.2		
Benzene	Cyclohexatriene		0.2	<0.2		
Bromomethane	Methyl bromide		0.2	<0.2		
Tetrachloromethane	Carbon tetrachloride		0.2	<0.2		
Chlorobenzene	Phenyl chloride		0.2	<0.2		
Chloroethane	Ethyl chloride		0.2	<0.2		
Chloroform	Trichloromethane		0.2	<0.2		
Chloromethane	Methyl chloride		0.2	<0.2		
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene		0.2	<0.2		
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene		0.2	<0.2		
Ethylbenzene	Phenyl ethane		0.2	<0.2		
Freon 12	Dichlorodifluoromethane		0.2	<0.2		
30n 11	Trichlorofluoromethane		0.2	<0.2		
reon 113	1,1,2-Trichloro-1,2,2-trifluoroethane		0.2	<0.2		
Freon 114	1,2-Dichlorotetrafluoroethane		0.2	<0.2		
Hexachlorobutadiene	Hexachloro-1,3-Butadiene		0.2	<0.2		

				,
			Verification	
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result
			ррьу	ppbv
Dichloromethane	Methylene chloride		0.2	<0.2
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene		0.4	<0.4
o-Xylene	1,2-Dimethylbenzene		0.2	<0.2
Styrene	Vinyl benzene		0.2	<0.2
Tetrachloroethene	PCE / Perchlorethylene		0.2	<0.2
Toluene	Methyl Benzene		0.2	<0.2
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene		0.2	<0.2
Trichloroethene	TCE / Trichloroethylene		0.2	<0.2
Vinyl chloride	Chloroethene		0.2	<0.2
1,2,4-Trichlorobenzene			0.2	<0.2
1,3-Butadiene	Biethylene		0.2	<0.2
1,4-Dioxane	p-Dioxane		0.2	<0.2
2,2,4-Trimethylpentane	Isooctane		0.2	<0.2
4-Ethyltoluene	p-Ethyltoluene		0.2	<0.2
Acetone	2-Propanone		0.2	<0.2
Allyl chloride	3-Chloropropene		0.2	<0.2
Bromodichloromethane	Dichlorobromomethane		0.2	<0.2
Bromoform	Tribromomethane		0.2	<0.2
Carbon disulfide	CS2		0.2	<0.2
Cyclohexane			0.2	<0.2
Dibromochloromethane	Chlorodibromoethane		0.2	<0.2
Ethyl acetate	Acetic ester		0.2	<0.2
Isopropyl alcohol	Isopropanol / 2-Propanol		0.2	<0.2
Methyl butyl ketone	MBK / 2-Hexanone		0.2	<0.2
Methyl ethyl ketone	MEK / 2-Butanone		0.2	<0.2
Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone		0.2	<0.2
Methyl tert-butyl ether	MTBE		0.2	<0.2
n-Heptane			0.2	<0.2
n-Hexane			0.2	<0.2
Propene	Propylene		0.2	<0.2
Tetrahydrofuran	THE		0.2	<0.2
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene		0.2	<0.2
Vinyl acetate	Acetic acid vinyl ester		0.2	<0.2
Bromoethene	Vinyl bromide		0.2	<0.2
Benzyl chloride	a-Chlorotoluene		0.2	<0.2
Ethanol	Ethyl alcohol		0.2	<0.2
Acetonitrile	Methyl cyanide		0.2	<0.2
Acrolein	2-Propenal		0.2	<0.2
Acrylonitrile	2-Propenenitrile		0.2	<0.2
tert-Butyl alcohol	TBA		0.2	<0.2
2-Chloroprene	2-Chloro-1,3-butadiene		0.2	<0.2
Diisopropyl Ether	DIPE		0.2	<0.2
Ethyl tert-butyl ether	ETBE		0.2	<0.2
tert-Amyl methyl ether	TAME		0.2	<0.2
Methyl methacrylate	MMA		0.2	<0.2
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride		0,2	<0.2
Isopropylbenzene 2-Chlorotoluene	Cumene		0.2	<0.2
	o-Chlorotoluene		0.2	<0.2
n-Propylbenzene	Phenyl propane		0.2	<0.2
tert-Butylbenzene	1,1-Dimethylethylbenzene		0.2	<0.2
sec-Butylbenzene	1-Methylpropylbenzene		0.2	<0.2
2-Isopropyltoluene n-Butylbenzene	o-Cymene		0.2	<0.2
Naphthalene	Phenyl butane		0.2 0.2	<0.2 * <0.2
тарпилаене			0.2	~∪.∠

Semplical/Collection Remote

Sampler No:

2824

Specified Purpose:

USEPA TO15 (Extended Suite)

LORs Required: Sampler Type:

Ambient Air Passive Sampler Verification Date: Valid To (At least): Verification File:

19-Jan-2018 -16-Feb-2018 180119_06.D

Flow Rate Calibrated at:

ml/min Analyst: Dale Semple

Calibrated by:

Approved for Dispatch by:

Samples - Verific at iron-Protocol. Samples are generally verified. In for purpose for the requested analyses and applications. For most applications samplers are varified clear according to the registerions of the PA method 1919

Earth-eorthraide ineithes a chock far containinaide, i said and damage to fistings.

Target Compound	Alt. Name	Verified to	Result
		ppbv	ppbv
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform	0.2	<0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride	0.2	<0.2
1,1,2-Trìchloroethane	Vinyl trichloride	0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride	0.2	<0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride	0.2	<0.2
1,2-Dichloroethane	Ethylene chloride	0.2	<0.2
1,2,4-Trimethylbenzene	Pseudocumene	0.2	<0.2
1,2-Dibromoethane	EDB / Ethylene dibromide	0.2	<0.2
1,2-Dichlorobenzene	o-Dichlorobenzene	0.2	<0.2
1,2-Dichloropropane	Propylene dichloride	0.2	<0.2
1,3,5-Trimethylbenzene	Mesitylene	0.2	<0.2
1,3-Dichlorobenzene	m-Dichlorobenzene	0,2	<0.2
1,4-Dichlorobenzene	p-Dichlorobenzene	0.2	<0.2
Benzene	Cyclohexatriene	0.2	<0.2
Bromomethane	Methyl bromide	0.2	<0.2
Tetrachloromethane	Carbon tetrachloride	0.2	<0.2
Chlorobenzene	Phenyl chloride	0,2	<0.2
Chloroethane	Ethyl chloride	0.2	<0.2
Chloroform	Trichloromethane	0.2	<0.2
Chloromethane	Methyl chloride	0.2	<0.2
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene	0.2	<0.2
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene	0.2	<0.2
Ethylbenzene	Phenyl ethane	0.2	<0.2
reon 12	Dichlorodifluoromethane	0.2	<0.2
Freon 11	Trichlorofluoromethane	0.2	<0.2
Freon 113	1,1,2-Trichloro-1,1,2-trifluoroethane	0.2	<0.2
Freon 114	1,2-Dichlorotetrafluoroethane	0.2	<0.2
Hexachlorobutadiene	Hexachloro-1,3-Butadiene	0.2	<0.2

MIGHT SCLUTIONS BREEF PARTIES

Target Compound	Alt. Name	Verified to	Result	
		ppbv	ppbv	
Dichloromethane	Methylene chloride	0.2	<0.2	
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene	0.4	<0.4	
o-Xylene	1,2-Dimethylbenzene	0.2	<0.2	
Styrene	Vinyl benzene	0.2	<0.2	
Tetrachloroethene	PCE / Perchlorethylene	0.2	<0.2	
Toluene	Methyl Benzene	0.2	<0.2	
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene	0.2	<0.2	
Trichloroethene	TCE / Trichloroethylene	0.2	<0.2	
Vinyl chloride	Chloroethene	0.2	<0.2	
1,2,4-Trichlorobenzene	•	0.2	<0.2	
1,3-Butadiene	Biethylene	0.2	<0.2	
1,4-Dioxane	p-Dioxane	0.2	<0.2	
2,2,4-Trimethylpentane	Isooctane	0,2	<0.2	
4-Ethyltoluene	p-Ethyltoluene	0.2	<0.2	
Acetone	2-Propanone	0.2	<0.2	
Allyl chloride	3-Chloropropene	0.2	<0.2	
Bromodichloromethane	Dichlorobromomethane	0.2	<0.2	
Bromoform	Tribromomethane	0.2	<0.2	
Carbon disulfide	CS2	0.2	<0.2	
Cyclohexane		0.2	<0.2	
Dibromochloromethane	Chlorodibromoethane	0.2	<0.2	
Ethyl acetate	Acetic ester	0.2	<0.2	
Isopropyl alcohol	Isopropanol / 2-Propanol	0.2	<0.2	
Methyl butyl ketone	MBK / 2-Hexanone	0.2	<0.2	
Methyl ethyl ketone	MEK / 2-Butanone	0.2	<0.2	
Methyl isobutyl ketone		0.2	<0.2	
	MIBK / 4-Methyl-2-pentanone MTBE	0.2	<0.2	
Methyl tert-butyl ether	IALLOC	0.2	<0.2	
n-Heptane				
n-Hexane	Proceedings.	0.2	<0.2	
Propene	Propylene	0.2	<0.2	
Tetrahydrofuran	THE	0.2	<0.2	
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene	0.2	<0.2	
Vinyl acetate	Acetic acid vinyl ester	0.2	<0.2	
Bromoethene	Vinyl bromide	0.2	<0.2	
Benzyl chloride	a-Chlorotoluene	0.2	<0.2	
Ethanol	Ethyl alcohol	0.2	<0.2	
Acetonitrile	Methyl cyanide	0.2	<0.2	
Acrolein	2-Propenal	0.2	<0.2	
Acrylonitrile	2-Propenenitrile	0.2	<0.2	
tert-Butyl alcohol	TBA	0.2	<0.2	
2-Chloroprene	2-Chloro-1,3-butadiene	0.2	<0.2	
Diisopropyl Ether	DIPE	0.2	<0.2	
Ethyl tert-butyl ether	ETBE	0.2	<0.2	
tert-Amyl methyl ether	TAME	0.2	<0.2	
Methyl methacrylate	MMA	0.2	<0.2	
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride	0.2	<0.2	
Isopropylbenzene	Cumene	0.2	<0.2	
2-Chlorotoluene	o-Chlorotoluene	0.2	<0.2	
n-Propyibenzene	Phenyl propane	0.2	<0.2	
tert-Butylbenzene	1,1-Dimethylethylbenzene	0.2	<0.2	
sec-Butylbenzene	1-Methylpropylbenzene	0.2	<0.2	
2-Isopropyltoluene	o-Cymene	0.2	<0.2	
n-Butylbenzene	Phenyl butane	0.2	<0.2	
	i itoliyi batalib	V. <u>~</u>		

CERTIFICATE OF ANALYSIS

Work Order : **EN1802096** Page : 1 of 4

Amendment : 1

Client : **ECOTECH PTY LTD** Laboratory : Environmental Division Newcastle

Contact : LARA NICHOLAS Contact : Hayley Withers

Address : 1492 FERNTREE GULLY ROAD Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

KNOXFIELD VICTORIA. AUSTRALIA 3180

 Telephone
 : +61 03 9730 7800
 Telephone
 : +612 4014 2500

 Project
 : WD4 PRIMULA AVE
 Date Samples Received
 : 16-Mar-2018 09:20

Order number : 234215 Date Analysis Commenced : 21-Mar-2018

C-O-C number : ---- Issue Date : 26-Mar-2018 13:21 Sampler : DANIEL RAYMOND

Site ----

Quote number : NE/070/17

No. of samples received : 2

No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Daniel Junek Senior Air Analyst Newcastle - Organics, Mayfield West, NSW

Daniel Junek Senior Air Analyst Newcastle, Mayfield West, NSW

Page : 2 of 4

 Work Order
 : EN1802096 Amendment 1

 Client
 : ECOTECH PTY LTD

 Project
 : WD4 PRIMULA AVE

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Amendment (26/03/2017): This report has been amended as a result of incorrect sampling dates being listed. All analysis results are as per the previous report
- EP101: Results reported in µg/m³ are calculated from PPBV results based on a temperature of 25°C and atmospheric pressure of 101.3 kPa.
- CAN-001: Results for Pressure As Received are measured under controlled conditions using calibrated laboratory gauges. These results are expressed as an Absolute Pressure. Equivalent gauge pressures may be calculated by subtracting the Pressure Laboratory Atmosphere taken at the time of measurement.
- CAN-001: Results for Pressure Gauge as Received are obtained from uncalibrated field gauges and are indicative only. These results may not precisely match calibrated gauge readings and may vary from field measurements due to changes in temperature and pressure

Page

3 of 4 EN1802096 Amendment 1 Work Order : ECOTECH PTY LTD Client Project WD4 PRIMULA AVE

Analytical Results

Sub-Matrix: AIR (Matrix: AIR)		Clie	ent sample ID	260218 C4778_S2820	070318 C4987_S1621	 	
	Cli	ent sampli	ng date / time	26-Feb-2018 00:00	07-Mar-2018 00:00	 	
Compound	CAS Number	LOR	Unit	EN1802096-001	EN1802096-002	 	
				Result	Result	 	
EP101: VOCs by USEPA Method TO	15 (Calculated Conce	entration)					
Benzene	71-43-2	1.6	μg/m³	<1.6	<1.6	 	
Toluene	108-88-3	1.9	µg/m³	2.6	<1.9	 	
Ethylbenzene	100-41-4	2.2	μg/m³	3.5	<2.2	 	
meta- & para-Xylene	108-38-3 106-42-3	4.3	μg/m³	5.2	<4.3	 	
ortho-Xylene	95-47-6	2.2	μg/m³	<2.2	<2.2	 	
Naphthalene	91-20-3	2.6	μg/m³	<2.6	<2.6	 	
Total Xylenes		6.6	μg/m³	<6.6	<6.6	 	
EP101: VOCs by USEPA Method TO	15r						
Benzene	71-43-2	0.5	ppbv	<0.5	<0.5	 	
Toluene	108-88-3	0.5	ppbv	0.7	<0.5	 	
Ethylbenzene	100-41-4	0.5	ppbv	0.8	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	1.0	ppbv	1.2	<1.0	 	
ortho-Xylene	95-47-6	0.5	ppbv	<0.5	<0.5	 	
Naphthalene	91-20-3	0.5	ppbv	<0.5	<0.5	 	
Total Xylenes		1.5	ppbv	<1.5	<1.5	 	
Sampling Quality Assurance							
Pressure - As received	PRESSURE	0.1	kPaa	88.2	100	 	
Pressure - Gauge as Received		1	Inches Hg	-4	0	 	
Pressure - Laboratory Atmosphere		0.1	kPaa	102	102	 	
Temperature as Received		0.1	°C	21.0	21.0	 	
USEPA Air Toxics Method TO15r Su	irrogates						
4-Bromofluorobenzene	460-00-4	0.5	%	105	103	 	

Page

: 4 of 4 : EN1802096 Amendment 1 Work Order Client : ECOTECH PTY LTD WD4 PRIMULA AVE Project

Surrogate Control Limits

Sub-Matrix: AIR	Recovery Limits (%)			
Compound	CAS Number	Low	High	
USEPA Air Toxics Method TO15r Surrogates				
4-Bromofluorobenzene	460-00-4	60	140	

QUALITY CONTROL REPORT

Work Order : **EN1802096** Page : 1 of 3

Amendment : 1

Client : ECOTECH PTY LTD Laboratory : Environmental Division Newcastle

Contact : LARA NICHOLAS Contact : Hayley Withers

Address : 1492 FERNTREE GULLY ROAD Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

KNOXFIELD VICTORIA, AUSTRALIA 3180

Telephone : +61 03 9730 7800 Telephone

Project : WD4 PRIMULA AVE Date Samples Received

Order number : 234215
C-O-C number : ----

Sampler · DANIEL RAYMOND

Site · ----

Quote number : NE/070/17

No. of samples received : 2
No. of samples analysed : 2

Date Samples Received : 16-Mar-2018
Date Analysis Commenced : 21-Mar-2018
Issue Date : 26-Mar-2018

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

: +612 4014 2500

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Daniel Junek Senior Air Analyst Newcastle - Organics, Mayfield West, NSW

Daniel Junek Senior Air Analyst Newcastle, Mayfield West, NSW

Page : 2 of 3

Work Order : EN1802096 Amendment 1
Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: AIR				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EP101: VOCs by USEPA Method TO15r (QC Lot: 1512425)										
EN1802096-001	260218 C4778_S2820	EP101-H: Benzene	71-43-2	0.5	ppbv	<0.5	<0.5	0.00	No Limit	
		EP101-H: Toluene	108-88-3	0.5	ppbv	0.7	0.6	0.00	No Limit	
		EP101-H: Ethylbenzene	100-41-4	0.5	ppbv	0.8	0.7	0.00	No Limit	
		EP101-H: ortho-Xylene	95-47-6	0.5	ppbv	<0.5	<0.5	0.00	No Limit	
		EP101-H: meta- & para-Xylene	108-38-3	1	ppbv	1.2	1.1	0.00	No Limit	
			106-42-3							

Page : 3 of 3

Work Order : EN1802096 Amendment 1
Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control terms Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (DCS) refers to certified reference materials, or known interference free matrices spiked with target analytes. The purpose of these QC parameters are to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS and DCS.

Sub-Matrix: AIR			Method Blank (MI	B) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPL	Os (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP101: VOCs by USEPA Method TO15r	(QCLot: 1512425)										
EP101-H: Benzene	71-43-2	0.5	ppbv	<0.5	100 ppbv	94.8	94.9	77	114	25	25
EP101-H: Toluene	108-88-3	0.5	ppbv	<0.5	100 ppbv	# 117	# 118	78	115	25	25
EP101-H: Ethylbenzene	100-41-4	0.5	ppbv	<0.5	100 ppbv	108	109	82	121	25	25
EP101-H: meta- & para-Xylene	108-38-3	1	ppbv	<1.0	200 ppbv	108	108	82	122	25	25
	106-42-3										
EP101-H: ortho-Xylene	95-47-6	0.5	ppbv	<0.5	100 ppbv	111	112	83	122	25	25

[•] No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EN1802096** Page : 1 of 4

Amendment : 1

Client : **ECOTECH PTY LTD** Laboratory : Environmental Division Newcastle

 Contact
 : LARA NICHOLAS
 Telephone
 : +612 4014 2500

 Project
 : WD4 PRIMULA AVE
 Date Samples Received
 : 16-Mar-2018

 Site
 : --- Issue Date
 : 26-Mar-2018

Sampler : DANIEL RAYMOND No. of samples received : 2
Order number : 234215 No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Matrix Spike outliers occur.
- Laboratory Control outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4

Work Order : EN1802096 Amendment 1
Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: AIR

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment		
Laboratory Control Spike (LCS) Recoveries									
EP101: VOCs by USEPA Method TO15r	QC-1512425-002		Toluene	108-88-3	117 %	78-115%	Recovery greater than upper control		
							limit		
Duplicate Control Spike (DCS) Recoveries									
EP101: VOCs by USEPA Method TO15r	QC-1512425-003		Toluene	108-88-3	118 %	78-115%	Recovery greater than upper control		
							limit		

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: AIR

Evaluation:	· -	- Holding	timo	breach :	/ -	\\/ithin	holding time	_
Evaluation.	~ -	- 100000000	инне	breach.	v =	VVILLIILI	noidina iime	-

Wallix. AIR				Evaluation	. A - Holding time	breach, V - With	ir noluling tim
Method	Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP101: VOCs by USEPA Method TO15r							
Summa style Canister - ALS Supplied Silonite (EP101-H) 070318 - C4987_S1621	07-Mar-2018				21-Mar-2018	06-Apr-2018	✓
Summa style Canister - ALS Supplied Silonite (EP101-H) 260218 - C4778_S2820	26-Feb-2018				21-Mar-2018	28-Mar-2018	✓
Sampling Quality Assurance							
Summa style Canister - ALS Supplied Silonite (CAN-001) 070318 - C4987_S1621	07-Mar-2018				21-Mar-2018	07-Mar-2019	✓
Summa style Canister - ALS Supplied Silonite (CAN-001) 260218 - C4778_S2820	26-Feb-2018				21-Mar-2018	26-Feb-2019	✓

Page : 3 of 4

Work Order EN1802096 Amendment 1 Client ECOTECH PTY LTD WD4 PRIMULA AVE Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: AIR	Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification									
Quality Control Sample Type		C	ount	Rate (%)			Quality Control Specification			
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation				
Duplicate Control Samples (DCS)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Laboratory Duplicates (DUP)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Laboratory Control Samples (LCS)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Method Blanks (MB)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard			

Page : 4 of 4

Work Order : EN1802096 Amendment 1
Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Canister Sampling - Field Data	CAN-001	AIR	In house: Referenced to USEPA TO14 / TO15
Hydrocarbons in Air by USEPA TO15	EP101-H	AIR	In house: Referenced to USEPA TO15r Volatile Organic Compounds in Air by USEPA TO15. Aliphatic and Aromatic Hydrocarbons
Hydrocarbons in Air by USEPA TO15 (mass/volume)	EP101-H-MV	AIR	In house: Referenced to USEPA TO15r Hydrocarbons in Air by USEPA TO15 (Calculated Concentration)

AIR CANISTER CHAIN OF CUSTODY

If sourced from an ALS Laboratory: please tick →

Y/N

Client Supplied Canister(s)?

□BRISBANE 2 Byth Street Stafford QLD 4053 Ph: 07 3243 7222 E: samples.brisbane@alsglobal.com □GLADSTONE 46 Callemondah Drive Clinton QLD 4680 Ph: 07 7471 5600 E: gladstone@alsglobal.com

DADELAIDE 21 Burma Road Pooraka SA 5095 Ph: 08 8359 0890 E: adelaide@alsglobal.com

DMACKAY 78 Harbour Road Mackay QLD 4740 Ph: 07 4944 0177 E: mackay@alsglobal.com

DMELBOURNE 2-4 Westall Road Springvale VIC 3171 Ph: 03 8549 9600 E: samples.melbourne@alsglobal.com DMUDGEE 1/29 Sydney Road Mudgee NSW 2850 Ph: 02 6372 6735 E: mudgee.mail@alsglobal.com

□NEWCASTLE 5/585 Maitland Road Mayfield West NSW 2304 Ph: 02 4014 2500 E: samples.newcastle@alsglobal.com DNOWRA 4/13 Geary Place North Nowra NSW 2541 Ph: 02 4423 2063 E: nowra@alsglobal.com

□PERTH 10 Hod Way Malaga WA 6090 Ph: 08 9209 7655 E: samples.perth@alsglobal.com

DSYDNEY 277-289 Woodpark Road Smithfield NSW 2164 Ph: 02 8784 8555 E: samples.sydney@alsglobal.com

DTOWNSVILLE 14-15 Desma Court Bohle QLD 4818
Ph: 07 4796 0600 E: townesville.environmental@alsglobal.com

DWOLLONGONG 99 Kenny Street Wollongong NSW 2500 Ph: 02 4225 3125 E: wollongong@aisglobal.com

CLIENT: ECOTECH		TURNAROUND REQUIREMENTS:	☐ Standard TAT (List due date):								LABORATORY USE ONLY (Circle) Receiver to initial and date/tim			e/time		
OFFICE: 1492 Ferntree Gully Rd, KNOX	FIELD VIC	(Standard TAT may be extended for multiple sequential analysis suites)	' I I Non Standard or urgent TA					AT (List due date):						Lab Y / N NE Y /	N I	N/A
PROJECT: WD4 PRIMULA AVE		ALS QUOTE NO.: NE/070/17	ALS QUOTE NO.: NE/070/17				EQUEN	QUENCE NUMBER (Circle))	Valves closed on Receipt?	Rec	Lab Y / N NE Y /	N I	N/A
PURCHASE ORDER NO234215		COUNTRY OF ORIGIN:		C	oc:	1	2	3	4 !	5 6	7	Canister/Sampler	Complete ar	nd Not Damaged	Yes	No
PROJECT MANAGER: Lara Nicholas		CONTACT PH: 03 9370 7845 0417351053		o	OF:	1	2	3	4 !	5 6	7	Other comment:		Temperature	C	
SAMPLER:	Daniel Raymond	SAMPLER MOBILE: 0419424932	RELINQUISHED BY:		F	RELIN	QUISH	IED B	' :		REL	INQUISHED BY:	:	RELINQUISHE	BY:	
COC Emailed to ALS? (YES / NO)		EDD FORMAT (or default):		Signature and dat	ite/time				Signa	ure and date/tir	ne		Signature and date/time		Signature and o	late/time
Email Reports to (will default to PM if no other addresses are listed): lara.nicholas@ecotech.com, daniel.raymond@ecotech.com		.raymond@ecotech.com	RECEIVED BY:		F	RECE	VED B	Y:			REC	EIVED BY:		RECEIVED BY:		
Email Invoice to (will default to PM if no oth	ner addresses are listed): naomi.dans@ecotech.com			Signature and dat	ite/time				Signa	ure and date/tir	ne		Signature and date/time		Signature and o	fate/time
COMMENTS/SPECIAL HANDLING/PEDI	ACEMENT OF PETUDN INSTRUCTIONS															

		GAS SAMPLE	CONTAINER INFORMA	TION			er Gauge res (PSI)	Refer to Caniste COAs for press	r Verification Rep ures measured by	orts and the Lab		ANALYSES R	NALYSES REQUESTED Additional		Additional Information		
LS USE ONLY			CANISTER / SAMPLE DETAILS					Reporting	g Requirem	ents	Suite Codes must be li		Suite Codes must be listed to attract suite price			Suite Codes must be listed to attract suite price	
LAB ID	CANISTER SERIAL NO.	FLOW CONTROLLER SERIAL NO.	CLIENT SAMPLE ID	DATE / TIME SAMPLED	MATRIX (eg Air, Soil Gas)		Pre- Post Sampling Amb		DRS Units VI-V1 Blass Other / ppbv, ppmv, pgm² mg/m² mg/m²				Comments on LORs required, potential hazards, likely contaminant levels, or samp requiring specific QC analysis etc. (LOR default routine method LOR after dilution)				
	4778	2820	260218	26/02/18 00:30 - 23:30	AIR	30	4	х	х		х						
	4987	1621	070318	07/03/18 00:30 - 23:30	AIR	30	1	х	х		х						
			,														

Specified Purpose:

Canister Type:

Canister Size:

Valve Type:

03-Feb-2018 /

Gelais (Satification) faith an Ballach

Canister No:

USEPA TO15 (Extended Suite)

Ambient Air

Verification Date:

4778

Valid To (At least): 03-Mar-2018 /

Verification File: 180202 24.D

Entech Silonite - Summa Style Last Stability Check: 01-Nov-2016 Next Check Scheduled: 01-Nov-2018 Nupro K. Gelderman

Analyst:

Dispatch Pressure: <0.01 psia Approved for Dispatch by:

Canister Verification Protocol Sensies are verified this: purpose for the requested analyses and applications of known). Estimost applications cartisties are varified clean according to the requirements of USEPA enothed TO is:

Lach restlication excesses a check for contemination, leaks and damage provinces. Statility checks are performed after 5 years or if Gamage to the carlister in suspected, then except two years, within the besignated holding time to the are each careers as capable of holding the target carmicals without significant sugradules.

Section 1			Verification	
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result
			ppbv	ppbv
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform		0.2	<0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride		0.2	<0.2
1,1,2-Trichloroethane	Vinyl trichloride		0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride		0.2	<0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride		0.2	<0.2
1,2-Dichloroethane	Ethylene chloride		0.2	<0.2
1,2,4-Trimethylbenzene	Pseudocumene		0.2	<0.2
1,2-Dibromoethane	EDB / Ethylene dibromide		0.2	<0.2
1,2-Dichlorobenzene	o-Dichlorobenzene		0.2	<0.2
1,2-Dichloropropane	Propylene dichloride		0.2	<0.2
1,3,5-Trimethylbenzene	Mesitylene		0.2	<0.2
1,3-Dichlorobenzene	m-Dichlorobenzene		0.2	<0.2
1,4-Dichlorobenzene	p-Dichlorobenzene		0.2	<0.2
Benzene	Cyclohexatriene		0.2	<0.2
Bromomethane	Methyl bromide		0.2	<0.2
Tetrachloromethane	Carbon tetrachloride		0.2	<0.2
Chlorobenzene	Phenyl chloride		0.2	<0.2
Chloroethane	Ethyl chloride		0.2	<0.2
Chloroform	Trichloromethane		0.2	<0.2
Chloromethane	Methyl chloride		0.2	<0.2
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene		0.2	<0.2
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene		0.2	<0.2
Ethylbenzene	Phenyl ethane		0.2	<0.2
Freon 12	Dichlorodifluoromethane		0.2	<0.2
30n 11	Trichlorofluoromethane		0.2	<0.2
reon 113	1,1,2-Trichloro-1,2,2-trifluoroethane		0.2	<0.2
Freon 114	1,2-Dichlorotetrafluoroethane		0.2	<0.2
Hexachlorobutadiene	Hexachloro-1,3-Butadiene		0.2	<0.2

			Verification	
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result
	•		ppbv	ppbv
Dichloromethane	Methylene chloride		0.2	<0.2
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene		0.4	<0.4
o-Xylene	1,2-Dimethylbenzene		0.2	<0.2
Styrene	Vinyl benzene		0.2	<0.2
Tetrachloroethene	PCE / Perchlorethylene		0.2	<0.2
Toluene	Methyl Benzene		0.2	<0.2
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene		0.2	~ 0.2
Trichloroethene	TCE / Trichloroethylene		0.2	<0.2
Vinyl chloride	Chloroethene		0.2	<0.2
1,2,4-Trichlorobenzene			0.2	<0.2
1,3-Butadiene	Biethylene		0.2	<0.2
1,4-Dioxane	p-Dioxane		0.2	<0.2
2,2,4-Trimethylpentane	Isooctane		0.2	<0.2
4-Ethyltoluene	p-Ethyltoluene		0.2	<0.2 [.]
Acetone	2-Propanone		0.2	<0.2
Allyl chloride	3-Chloropropene		0.2	<0.2
Bromodichloromethane	Dichlorobromomethane		0.2	<0.2
Bromoform ,	Tribromomethane		0,2	<0.2
Carbon disulfide	CS2		0.2	<0.2
Cyclohexane			0.2	<0.2
Dibromochloromethane	Chlorodibromoethane		0.2	<0.2
Ethyl acetate	Acetic ester		0.2	<0.2
Isopropyl alcohol	Isopropanol / 2-Propanol		0.2	<0.2
Methyl butyl ketone	MBK / 2-Hexanone		0.2	<0.2
Methyl ethyl ketone	MEK / 2-Butanone		0.2	<0.2
Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone		0.2	<0.2
Methyl tert-butyl ether	MTBE		0.2	<0.2
n-Heptane			0.2	<0.2
n-Hexane			0.2	<0.2
Propene	Propylene		0.2	<0.2
Tetrahydrofuran	THF		0.2	<0.2
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene		0.2	<0.2
Vinyl acetate	Acetic acid vinyl ester		0.2	<0.2
Bromoethene	Vinyl bromide		0.2	<0.2
Benzyl chloride	a-Chlorotoluene		. 0.2	<0.2
Ethanol	Ethyl alcohol		0.2	<0.2
Acetonitrile	Methyl cyanide		0.2	<0.2
Acrolein	2-Propenal		0.2	<0.2
Acrylonitrile	2-Propenenitrile		0.2	<0.2
tert-Butyl alcohol	TBA		0.2	<0.2
2-Chloroprene	2-Chloro-1,3-butadiene		0.2	<0.2
Diisopropyl Ether	DIPE		0.2	<0.2
Ethyl tert-butyl ether	ETBE		0.2	<0.2
tert-Amyl methyl ether	TAME		0.2	<0.2
Methyl methacrylate	MMA		0.2	<0.2
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride		0.2	<0.2
Isopropylbenzene	Cumene		0.2	<0.2
2-Chlorotoluene	o-Chiorotoluene		0.2	<0.2
n-Propylbenzene	Phenyl propane		0.2	<0.2
tert-Butylbenzene	1,1-Dimethylethylbenzene		0.2	<0.2
sec-Butylbenzene	1-Methylpropylbenzene		0.2	<0.2
2-Isopropyitoluene	o-Cymene		0.2	<0.2
n-Butylbenzene	Phenyl butane		0.2	<0.2
Naphthalene			0.2	<0.2

2820

Sampler No:

Specified Purpose: USEPA TO15 (Extended Suite)

LORs Required: Ambient Air Sampler Type: Passive Sampler

Flow Rate Calibrated at:

Calibrated by:

Verification Date: Valid To (At least): Verification File:

Analyst:

Approved for Dispatch by:

29-Jan-2018 26-Feb-2018 180129_01.D

K. Gelderman

6/2/15

Sample's are generally verified hit for purpose for the requested analysis and applications samples are verified countactording to the requirements of USDA earliest TOTs.

Each with Califor Involves a Chica IGC containment on Teaks and damage to Instruct

Target Compound	Ait. Name	Verified to	Result
		ydqq	ppbv
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform	0.2	<0.2
1,1,2,2-Tetrachioroethane	R-130 / Acetylene tetrachloride	0.2	<0.2
1,1,2-Trichloroethane	Vinyl trichloride	0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride	0.2	<0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride	0.2	<0.2
1,2-Dichloroethane	Ethylene chloride	0.2	<0.2
1,2,4-Trimethylbenzene	Pseudocumene	0.2	<0.2
1,2-Dibromoethane	EDB / Ethylene dibromide	0.2	<0.2
1,2-Dichlorobenzene	o-Dichlorobenzene	0.2	<0.2
1,2-Dichloropropane	Propylene dichloride	0.2	<0.2
1,3,5-Trimethylbenzene	Mesitylene	0.2	<0.2
1,3-Dichlorobenzene	m-Dichlorobenzene	0.2	<0.2
1,4-Dichlorobenzene	p-Dichlorobenzene	0,2	<0.2
Benzene	Cyclohexatriene	0.2	<0.2
Bromomethane	Methyl bromide	0.2	<0.2
Tetrachloromethane	Carbon tetrachloride	0.2	<0.2
Chlorobenzene	Phenyl chloride	0.2	<0.2
Chloroethane	Ethyl chloride	0.2	<0.2
Chloroform	Trichloromethane	0.2	<0.2
Chloromethane	Methyl chloride	0.2	<0.2
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene	0.2	<0.2
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene	0.2	<0.2
thylbenzene	Phenyl ethane	0.2	<0.2
∴reon 12	Dichlorodifluoromethane	0.2	<0.2
Freon 11	Trichlorofluoromethane	0.2	<0.2
Freon 113	1,1,2-Trichloro-1,1,2-trifluoroethane	0.2	<0.2
Freon 114	1,2-Dichlorotetrafluoroethane	0.2	<0.2
Hexachlorobutadiene	Hexachloro-1,3-Butadiene	0.2	<0.2

AIGHT SOLUTIONS PIGHT PARTNER

Target Compound	Alt. Name	Verified to	Result
		ppbv	ppbv
Dichloromethane	Methylene chloride	0.2	<0.2
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene	0.4	<0.4
o-Xylene	1,2-Dimethylbenzene	0.2	<0.2
Styrene	Vinyl benzene	0.2	<0.2
Tetrachloroethene	PCE / Perchlorethylene	0.2	<0.2
Toluene	Methyl Benzene	0.2	<0.2
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene	0.2	<0.2
Trichloroethene	TCE / Trichloroethylene	0.2	<0.2
Vinyl chloride	Chloroethene	0.2	. <0.2
1,2,4-Trichlorobenzene		0.2	<0.2
1,3-Butadiene	Biethylene	0.2	<0.2
1,4-Dioxane	p-Dioxane	0.2	<0.2
2,2,4-Trimethylpentane	Isooctane	0.2	<0.2
4-Ethyltoluene	p-Ethyltoluene	0.2	<0.2
Acetone	2-Propanone	0.2	<0.2
Allyl chloride	3-Chloropropene	0.2	<0.2
Bromodichloromethane	Dichlorobromomethane	0.2	<0.2
Bromoform	Tribromomethane	0.2	<0.2
Carbon disulfide	CS2	0.2	<0.2
Cyclohexane		0.2	<0.2
Dibromochloromethane	Chlorodibromoethane	0.2	<0.2
Ethyl acetate	Acetic ester	0.2	<0.2
Isopropyl alcohol	Isopropanol / 2-Propanol	0.2	<0.2
Methyl butyl ketone	MBK / 2-Hexanone	0.2	<0.2
Methyl ethyl ketone	MEK / 2-Butanone	0.2	<0.2
Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone	0.2	<0.2
Methyl tert-butyl ether	MTBE	0.2	<0.2
n-Heptane		0.2	<0.2
n-Hexane		0.2	<0.2
Propene	Propylene	0.2	<0.2
Tetrahydrofuran	THF	0.2	<0.2
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene	0.2	<0.2
Vinyl acetate	Acetic acid vinyl ester	0.2	<0.2
Bromoethene	Vinyl bromide	0.2	<0.2
Benzyl chloride	o-Chlorotoluene	0.2	<0.2
Ethanol	Ethyl alcohol	0.2	<0.2
Acetonitrile	Methyl cyanide	0.2	<0.2
Acrolein	2-Propenal	0.2	<0.2
Acrylonitrile	2-Propenenitrile	0.2	<0.2
tert-Butyl alcohol	TBA	0.2	<0.2
2-Chloroprene	2-Chloro-1,3-butadiene	0.2	<0.2
Diisopropyl Ether	DIPE	0.2	<0.2
Ethyl tert-butyl ether	ETBÉ	0.2	<0.2
tert-Amyl methyl ether	TAME	0.2	<0.2
Methyl methacrylate	MMA	0.2	<0.2
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride	0.2	<0.2
Isopropylbenzene	Cumene	0.2	<0.2
2-Chlorotoluene	o-Chlorotoluene	0.2	<0.2
n-Propylbenzene	Phenyl propane	0.2	<0.2
tert-Butylbenzene	1,1-Dimethylethylbenzene	0.2	<0.2
sec-Butylbenzene	1-Methylpropylbenzene	0.2	<0.2
2-Isopropyltoluene	o-Cymene	0.2	<0.2
n-Butylbenzene	Phenyl butane	0.2	<0.2
Naphthalene		0.2	<0.2