

Accredited for compliance with ISO/IEC 17025 - Testing.

Accreditation No. 14184.

West Gate Tunnel Project

Ambient Air Quality Monitoring Validated Report

1st June 2018 - 30th June 2018

Report No.: DAT13410

Report issue date: 25th July 2018

Maintenance contract: MC1984

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Customer Details				
Customer West Gate Tunnel Project				
Contact name	Tim Spawton			
Address	Level 9, 5 Bowen Crescent, Melbourne Vic. 3004			
Email	westgatetunnelproject@wda.vic.gov.au			
Phone	1800 105 105			

Revision History					
Revision Report ID Date Analyst					
0	DAT13410	25/07/18	Diep LAM		

Report by: Diep LAM

Approved Signatory: Jon ALEXANDER

Table of Contents

Customer Details	2
Revision History	2
Table of Contents	3
List of Figures	4
List of Tables	5
Executive Summary	7
Introduction	8
1.0 Monitoring and Data Collection	9
1.1. Siting Details	9
1.2. Monitored Parameters	11
1.3. Data Collection Methods	12
1.3.1. NATA Endorsement and Compliance with Standards	13
1.3.2. Data Acquisition (Continuous Monitoring)	14
1.3.3. Sampling and analysis for BTEX	14
1.4. Data Validation and Reporting	14
1.4.1. Validation	14
1.4.2. Reporting	15
2.0 Air Quality Standards and Goals	16
3.0 Calibrations and Maintenance	18
3.1. Units and Uncertainties	18
3.2. Automatic calibration checks	19
3.3. Maintenance	19

3.3.	8.1. Maintenance notes	19
3.3.	3.2. Calibration & Maintenance Summary Tables	19
4.0	Results	23
4.1.	. Valid Data Capture	23
4.2.	2. Air Quality Monthly Summary	24
4.3.	BTEX Analytical Results Summary	26
4.4.	Graphic Representations	27
5.0	Valid Data Exception Table	38
6.0	Report Summary	42
Apper	ndix 1 - Definitions & Abbreviations	43
Apper	ndix 2 - Explanation of Exception Table	44
Apper	ndix 3 – BTEX Analytical Results	46
List o	of Figures	
Figure	e 1: West Gate Tunnel Project Monitoring Station Location	10
Figure	e 2: West Gate Tunnel Project - PM ₁₀ 1-day Averages for June 2018	27
Figure	e 3: West Gate Tunnel Project - PM _{2.5} 1-day Averages for June 2018	27
Figure	e 4: Station 1 - PM ₁₀ 1-hour Averages scatter plot for June 2018	28
Figure	e 5: Station 1 - PM _{2.5} 1-hour Averages scatter plot for June 2018	28
Figure	e 6: Station 1 - Monthly Wind Rose for June 2018	29
Figure	e 7: Station 2 - PM ₁₀ 1-hour Averages scatter plot for June 2018	29
Figure	e 8: Station 2 - PM _{2.5} 1-hour Averages scatter plot for June 2018	30
Figure	e 9: Station 2 - Monthly Wind Rose for June 2018	30

Figure 10: Station 3 - PM ₁₀ 1-hour Averages scatter plot for June 2018	31
Figure 11: Station 3 - PM _{2.5} 1-hour Averages scatter plot for June 2018	31
Figure 12: Station 3 - Monthly Wind Rose for June 2018	32
Figure 13: Station 4 - PM ₁₀ 1-hour Averages scatter plot for June 2018	32
Figure 14: Station 4 - PM _{2.5} 1-hour Averages scatter plot for June 2018	33
Figure 15: Station 4 - CO 1-hour Averages scatter plot for June 2018	33
Figure 16: Station 4 - NO ₂ 1-hour Averages scatter plot for June 2018	34
Figure 17: Station 4 – CO daily maximum based on 1-hour and 8-hour rolling Averages for June 2018	34
Figure 18: Station 4 - NO ₂ daily maximum based on 1-hour Averages for June 2018	35
Figure 19: Station 4 - Monthly Wind Rose for June 2018	35
Figure 20: Station 5 - PM ₁₀ 1-hour Averages scatter plot for June 2018	36
Figure 21: Station 5 - PM _{2.5} 1-hour Averages scatter plot for June 2018	36
Figure 22: Station 5 - Monthly Wind Rose for June 2018	37
List of Tables Table 1: West Gate Tunnel Project monitoring locations	9
Table 2: Parameters measured at the West Gate Tunnel Project monitoring stations	11
Table 3: Methods	12
Table 4: Air Quality Standards for Station1	16
Table 5: Air Quality Standards and Air Toxic NEPM Goals for stations 2, 3, 4 & 5	17
Table 6: Units and Uncertainties	18
Table 7: Automatic Span/Zero and Background Check Times	19
Table 8: Station 1 Maintenance Table June 2018	20

Table 9: Station 2 Maintenance Table June 2018	20
Table 10: Station 3 Maintenance Table June 2018	21
Table 11: Station 4 Maintenance Table June 2018	21
Table 12: Station 5 Maintenance Table June 2018	22
Table 13: West Gate Tunnel Project Monthly Data Capture for June 2018	23
Table 14: Station 1 Exceedances recorded for June 2018	24
Table 15: Station 2 Exceedances recorded for June 2018	24
Table 16: Station 3 Exceedances recorded for June 2018	25
Table 17: Station 4 Exceedances recorded for June 2018	25
Table 18: Station 4 readings above Monitoring Investigation Level recorded for June 2018	25
Table 19: Station 5 Exceedances recorded for June 2018	26
Table 20: Station 4 BTEX Analytical Results for June 2018	26
Table 21: Station 1 Valid Data Exception Table	38
Table 22: Station 2 Valid Data Exception Table	38
Table 23: Station 3 Valid Data Exception Table	39
Table 24: Station 4 Valid Data Exception Table	39
Table 25: Station 5 Valid Data Exception Table	41

Executive Summary

Ecotech Pty Ltd is an independent company, contracted Transurban Limited (Principal) to undertake continuous ambient air quality monitoring (AAQM) at West Gate Tunnel Project network of sites in Yarraville, Victoria, Australia. Monitoring is being conducted to inform environmental compliance requirements of the planned West Gate Tunnel Project. The air quality monitoring contract between Ecotech and Transurban Limited (Principal) has ended as per schedule in March 2018. Ecotech is assisting the D&C Subcontractor in the transition program in the month of June 2018.

The West Gate Tunnel Project monitoring network consists of five AAQM stations. Ecotech commissioned the West Gate Tunnel Project monitoring stations as following:

- Station 1 on 19th July 2016.
- Station 2 on 26th August 2016.
- Station 4 on 3rd November 2016. BTEX sampling at Station 4 commenced on 21st November 2016.
- Station 5 on 17th January 2017.
- Station 3 on 25th January 2017.

This report presents the data for June 2018.

- The percentage of valid data capture for all parameters at West Gate Tunnel Project was above 85% for the reporting month.
- Two recorded 24-hour PM_{2.5} readings at Station 1 exceeded the SEPP (AAQ) EQO during the reporting period. Refer to Table 14 for more details.
- Two recorded 24-hour PM_{2.5} readings at Station 2 exceeded the SEPP(AQM) Schedule B intervention levels during the reporting period. Refer to Table 15 for more details.

Introduction

Ecotech Pty Ltd was commissioned by Transurban Limited (Principal) to provide monitoring and data reporting for the West Gate tunnel Project ambient air quality monitoring stations, located as detailed in Table 1. Ecotech commenced data collection at Station 1 on the 19th July 2016, at Station 2 on the 26th August 2016, and at Station 4 on the 3rd November 2016. BTEX sampling at Station 4 commenced on 21st of November 2016. Monitoring commenced at Station 5 and Station 3 on the 17th and 25th of January 2017 respectively.

The monitoring contract between Ecotech and Transurban Limited (Principal) has ended in the month of March 2018 as per contract schedule. Ecotech is assisting the D&C Subcontractor in the transition program which begins in April 2018.

This report presents the data for June 2018.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

1.0 Monitoring and Data Collection

1.1. Siting Details

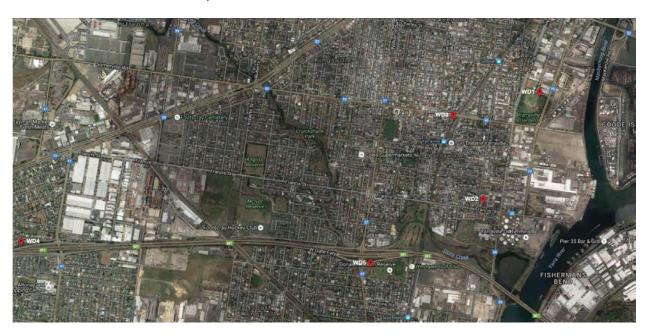
The West Gate Tunnel Project consists of five ambient air quality monitoring stations. The station's location and siting details are described below.

Table 1: West Gate Tunnel Project monitoring locations

Site Name	Street Address	Geographical Coordinates	Height Above Sea Level (m)	
Station 1	Barbara Beyer Reserve,	37°48'43.20"S	10m	
Station 1	2 Harris St, Yarraville	144°54'0.00"E	TOM	
Station 2	51-53 Francis Street,	37°49'15.59"S	12m	
	Yarraville	144°53'38.41"E		
Station 3	Railway Reserve,	37°48'50.40"S	17m	
Station 5	Woods St, Yarraville	144°53'27.60"E	17111	
Station 4	Primula Ave, Brooklyn	37°49'27.28"S	23m	
Station 4	Primula Ave, Brooklyii	144°50'45.72"E	23111	
Station 5	Donald McLean	37°49'35.28"S	6m	
Station 5	Reserve, Spotswood	144°52'55.25"E	OIII	

Siting audits were conducted to assess for compliance with AS/NZS 3580.1.1:2016 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

Siting audits performed at West Gate Tunnel Project monitoring network as follows:


- Station 1 on 31st July 2017.
- Station 2 on 22nd September 2017.
- Station 3 on 4th February 2018.
- Station 4 on 1st November 2017.
- Station 5 on 8th February 2018.

The siting audits of these stations showed general compliance with the guidelines in AS/NZS 3580.1.1:2016. These stations are classified as peak stations according to AS/NZS 3580.1.1:2016. Please see details of any non-compliance in Section 1.3.1.

The meteorological monitoring siting audits were completed at West Gate Tunnel Project as follows:

- Station 1 on 31st July 2017.
- Station 2 on 22nd September 2017.
- Station 3 on 1st February 2018.
- Station 4 on 1st November 2017.
- Station 5 on 2nd February 2018.

Figure 1: West Gate Tunnel Project Monitoring Station Location

1.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at West Gate Tunnel Project monitoring stations. Appendix 1 defines any abbreviated parameter names used throughout the report.

Sampling of all parameters is continuous, with the exception of BTEX. BTEX sampling is typically conducted by Ecotech on a one in six-day cycle at Station 4. BTEX samples are collected from 12:30 AM to 11:30 PM on the sampling day.

For meteorological sensors, the elevation given in Table 2 is the height above ground level at the monitoring station.

Table 2: Parameters measured at the West Gate Tunnel Project monitoring stations

Station	Parameter Measured	Instrument and Measurement Technique		
	PM ₁₀	Rupprecht & Patashnick / Thermo – TEOM (Tapered Element Oscillating Microbalance)		
All stations	PM _{2.5}	Met One BAM 1020 – Beta ray attenuation		
	Wind Speed (horizontal, elevation 10m)	Vaisala WS425 – ultrasonic		
	Wind Direction (elevation 10m)	Vaisala WS425 – ultrasonic		
Station 4	Benzene, Toluene, Ethyl benzene, Xylene (BTEX)	Collected In Specially-Prepared Canisters And Analysed By Gas Chromatography/Mass Spectrometry (GC/MS)		
	NO, NO ₂ , NO _x	Ecotech EC9841 – gas phase chemiluminescence		
	СО	Ecotech EC9830 – NDIR gas filter correlation infrared photometry		

1.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in sections 1.3.1. and 1.3.3.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method	
NO, NO ₂ , NO _x	AS/NZS 3580.5.1- 2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method	
NO, NO2, NOx	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence	
СО	AS/NZS 3580.7.1- 2011	Methods for sampling and analysis of ambient air. Method 7.1: Determination of carbon monoxide - direct reading instrumental method	
CO	Ecotech Laboratory Manual	In-house method 6.3 Carbon monoxide by gas filter correlation spectrophotometry	
BTEX (Sampling only)	US EPA TO-15	Method TO-15 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air Second Edition. Compendium Method TO-15 Determination of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analysed By Gas Chromatography/Mass Spectrometry (GC/MS)	
	Ecotech Laboratory Manual	In-house method 6.9 Volatile organic compounds in air collected in specially prepared canisters and analysed by gas chromatography/mass spectrometry	
PM ₁₀ (TEOM)	AS/NZ 3580.9.8- 2008	Methods for sampling and analysis of ambient air. Method 9.8: Determination of suspended particulate matter - PM_{10} continuous direct mass method using a tapered element oscillating microbalance analyser.	
	Ecotech Laboratory Manual	In-house method 7.3- Particulates - PM _{2.5} , PM ₁₀ by TEOM	

Parameter Measured	Data Collection Methods Used	Description of Method		
PM _{2.5} (BAM 1020)	AS/NZS 3580.9.12 - 2013	Methods of sampling and analysis of ambient air. Method 9.12: Determination of suspended particulate matter – PM _{2.5} beta attenuation monitors		
F1012.5 (BA101 1020)	Ecotech Laboratory Manual	In-house method 7.5 – Measurement of PM ₁₀ , PM _{2.5} and TSP using Beta Attenuation Monitor.		
Vector Wind Speed (Horizontal)	AS/NZS 3580.14 2014	Methods for sampling and analysis of ambient air. Method 1 Meteorological monitoring for ambient air quality monitoring applications		
	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer		
Vector Wind Direction	AS/NZS 3580.14 2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications		
vector wind direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer		

1.3.1. NATA Endorsement and Compliance with Standards

Unless stated below, parameters are monitored at the West Gate Tunnel Project monitoring network according to the methods detailed in Table 3 above.

- Siting of all stations may not fully comply with the guidelines in AS 3580.14-2014 "Methods for sampling and analysis of ambient air Meteorological monitoring for ambient air quality monitoring applications guidelines", due to possible air flow disturbances caused by nearby trees. Locating monitoring stations in urban areas often requires compromise due to a lack of clear space areas without obstructions as well as the availability of usable power supplies. Given the location, the site is fit for purpose while not fully compliant.
- AS/NZS 3580.1.1:2007 recommends a minimum distance between inlets and the roof of the supporting structure of 1.0m. However, all stations have inlets less than 1.0m above the roof.
 It is not thought this small difference will have any impact on measured concentrations.

- Ecotech's NATA scope of accreditation covers sampling only for BTEX parameters. Analysis
 and canister preparation is conducted by NATA accredited laboratories ALS as outlined in
 1.3.3 below.
- Wind sensors at Stations 2, 3 and 5 were out of wind tunnel calibrations. Ecotech will try to arrange the wind tunnel calibration at the next suitable maintenance visit.

1.3.2. Data Acquisition (Continuous Monitoring)

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at each of the monitoring sites. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS loggers on a daily basis (using AirodisTM version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5-minute intervals.

1.3.3. Sampling and analysis for BTEX

BTEX canister sampling was conducted by Ecotech field service technicians. ALS (NATA Accreditation No. 825) provided the canisters and laboratory analysis services according to method US EPA TO-15.

1.4. Data Validation and Reporting

1.4.1. Validation

The Ecotech ERS department performs daily data checks on continuously monitored parameters to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated 5-minute data, while PM_{2.5} is based on validated 1-hour data.

1.4.2. Reporting

The reported data for continuously monitored parameters is in a Microsoft Excel format file named "West Gate Tunnel Project Monthly Validated Data Report_MMMYY.xls" where MMMYY is the abbreviated month and year.

The Excel file consists of 6 Excel worksheets:

- 1. Cover
- 2. 5 Minute Data
- 3. 1 Hour Data
- 4. 8 Hour Rolling
- 5. 1 Day Data
- 6. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

Averages are based on a minimum of 75% valid readings within the averaging period. All averages are calculated from the 5-minute data, while $PM_{2.5}$ averages are calculated from 1-hour data.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00am is for the data collected from 1:00am to 2:00am. For the purposes of calculating and reporting 4 and 8-hour averages, the first rolling average in a calendar day ends at 1.00 am and includes hours from the previous calendar day. One-hour averages are calculated based on a clock hour. One day and one-year averages are calculated based on calendar days.

Wind Data Reporting

Wind speed and wind direction data associated with calm wind conditions are reported in accordance with the requirements of AS 3580.14-2014. Calm wind conditions are defined as wind speeds below the starting threshold of the wind speed / direction sensors. Sensor starting thresholds are given in Table 6 under "Measurement Range".

BTEX Reporting

Results will be provided to Ecotech by the analytical laboratory and summarised within this report. Full analytical results will be included as an Appendix 3 at the end of this report.

2.0 Air Quality Standards and Goals

The air quality standards for pollutants monitored at the West Gate Tunnel Project monitoring network are based on:

- State Environmental Protection Policy (Ambient Air Quality) Environmental Quality Objectives (SEPP (AAQ) EQO) for Station 1 (Yarraville Gardens) monitoring station, and
- State Environmental Protection Policy (Air Quality Management) (SEPP (AQM)) Schedule B for the remaining West Gate Tunnel Project monitoring stations.

The air quality goals are shown in Tables 4 and 5 below.

Table 4: Air Quality Standards for Station 1

Parameter	Time Period	Exceedance Level	Units	Maximum allowable exceedances
PM ₁₀	1 day	50	μg/m³	None (see note)
PM ₁₀	1 year	20	μg/m³	None
PM _{2.5}	1 day	25	μg/m³	None (see note)
PM _{2.5}	1 year	8	μg/m³	None

Note:

Exceptional events are excluded from this standard. As per the Ambient Air Quality NEPM, *Exceptional event* means a fire or dust occurrence that adversely affects air quality at a particular location and causes an exceedance of 1-day average standards in excess of normal historical fluctuations and background levels and is directly related to: bushfire; jurisdiction authorised hazard reduction burning; or continental scale windblown dust.

Ecotech will include any valid data identified as being associated with an exceptional event in all report tables and graphic representations. However, 1-day averages associated with exceptional events will not be counted as exceedances of the Air Quality standard.

Table 5: Air Quality Standards and SEPP (AQM) standards for Stations 2, 3, 4 & 5

Parameter	Time Period	Exceedance Level	Units	Maximum allowable exceedances
СО	1 hour	29.0	ppm	-
NO ₂	1 hour	140	ppb	-
Benzene ¹	1 year (based on 1-day averages)	0.003	ppm	8-year goal is to gather sufficient data nationally to facilitate development of a standard.
	1 day	1	ppm	8-year goal is to gather sufficient data nationally to facilitate development of a standard.
Toluene ¹	1 year (based on 1-day averages)	0.1	ppm	
	1 day	0.25	ppm	8-year goal is to gather sufficient data nationally to facilitate development of a standard.
Xylene ¹	1 year (based on 1-day averages)	0.2	ppm	
PM ₁₀	1 day	60	μg/m³	-
PM _{2.5}	1 day	36	μg/m³	-

Note:

SEPP (AQM)) Schedule B – Intervention levels for Class 1, 2 and 3 indicators:

Intervention levels are used to assess the air quality monitoring data to determine whether the beneficial uses set out in Clause 9 of this Policy are being protected. Intervention levels are not used in the assessment of the design of individual sources. An intervention level is numerically greater than the design criteria for a given pollutant as it does not apply to an individual source but to all sources of the pollutant within a defined area.

¹ This value is monitoring investigation level of air pollution only, not limits according to Legislation F2011C00855 - National Environment Protection (Air Toxic) Measure 2011.

3.0 Calibrations and Maintenance

3.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ²
NO, NO _x (EC9841)	ppb	1 ppb	± 13 ppb or 10% of reading K factor of 2.0	0 ppb to 500 ppb
NO ₂ (EC9841)	ppb	1 ppb	± 17 ppb K factor of 2.0	0 ppb to 500 ppb
CO (EC9830)	ppm	0.1 ppm	± 1 ppm or 10% of reading, K factor of 2.0	0 ppm to 50 ppm
PM ₁₀ (TEOM)	μg/m³	0.1 μg/m³	±5.0 μg/m³ or 3.6% of reading, K factor of 2.0	0 μg/m³ to 1 g/m³
PM _{2.5} (BAM 1020)	μg/m³	1 μg/m³	$\pm 5.0 \mu g/m^3 + 5.4\%$ of reading, K factor of 2.0	5 to 1000 μg/m³
Vector Wind Speed	m/s	0.1 m/s	±0.4 m/s or 2.0% of reading, K factor of 2.0	0 m/s to 30 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.0	0 deg to 360 deg Starting threshold: 0 m/s

 $^{^2}$ Uncertainties may not be calculated based on the full measurement range. Uncertainty for CO by EC9830 is calculated based on a range of 0-10 ppm. Uncertainty for NO, NO₂ and NO_x by EC 9841 are calculated based on a measurement range of 0-125 ppb.

3.2. Automatic calibration checks

Automatic span, zero and background checks occur each night for continuously monitored gaseous parameters. Data associated with these checks is invalidated and is not specifically referred to in the valid data exception reports. Table 7 displays the times for when these checks occur.

Table 7: Automatic Span/Zero and Background Check Times

Parameter	Span/Zero	Background
СО	01:00 to 01:25	23:35 to 23:50
NO, NO ₂ , NO _x	01:00 to 01:25	-

3.3. Maintenance

3.3.1. Maintenance notes

Only basic maintenance was performed at these stations during June 2018 due to the expiration of the maintenance contract. This included response to breakdowns and may have resulted in reduced data capture. In late May 2018, Ecotech received a request from D&C Subcontractor to commence the decommissioning of five AAQM stations in early June 2018 with the aim to complete the decommissioning process by mid-June 2018. Ecotech made provisions to cease the monitoring as requested. In early June 2018, Ecotech received another request from D&C Subcontractor to extend Ecotech monitoring services for a few more months. Therefore, stations 1 and 2 were decommissioned on 5th June and both of these stations were re-commissioned on 7th June 2018. Data is unavailable at stations 1 and 2 during this period.

3.3.2. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Tables 8 - 12 on the next pages indicate when the particulate, gas and meteorological equipment were last maintained/calibrated.

Table 8: Station 1 Maintenance Table June 2018

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
PM ₁₀	07/06/18	Re-commissioned	05/06/18	6-Monthly
PM _{2.5}	07/06/18	Re-commissioned	05/06/18	Yearly
Wind Speed	21/06/18	Sensor swapped out ID: WS-0531 OUT	04/05/16 ³	2-Yearly
		ID: 11-0309 IN	07/05/184	2-Yearly
Wind Direction	21/06/18	Sensor swapped out ID: WS-0531 OUT	04/05/16 ³	2-Yearly
		ID: 11-0309 IN	07/05/184	2-Yearly

Table 9: Station 2 Maintenance Table June 2018

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
PM ₁₀	08/06/18	TEOM control unit replaced ID: 00-0593 OUT	01/02/18	6-Monthly
		ID: AL-0011 IN	08/06/18	6-Monthly
PM _{2.5}	07/06/18	Re-commissioned	05/06/18	Yearly
Wind Speed	07/06/18	Re-commissioned	24/05/16 ⁵	2-Yearly
Wind Direction	07/06/18	Re-commissioned	24/05/16 ⁵	2-Yearly

³ Wind tunnel calibration performed on 04/05/2016 and installed at station 1 on 22/07/2016. ⁴

Wind tunnel calibration performed on 07/05/2018 and installed at station 1 on 21/06/2018. ⁵

Wind tunnel calibration performed on 24/05/2016 and installed at station 2 on 12/09/2016.

Table 10: Station 3 Maintenance Table June 2018

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
PM ₁₀	12/06/18	Monthly	01/02/18	6-Monthly
PM _{2.5}	12/06/18	Monthly	07/03/18	Yearly
Wind Speed	12/06/18	Monthly	18/01/16 ⁶	2-Yearly
Wind Direction	12/06/18	Monthly	18/01/16 ⁶	2-Yearly

Table 11: Station 4 Maintenance Table June 2018

Parameter	Date of Last Maintenand Maintenance Type		Date of Last Calibration	Calibration Cycle
PM ₁₀	18/06/18	Non-scheduled	05/04/18	6-Monthly
PM _{2.5}	12/06/18	Monthly	05/04/18	Yearly
СО	12/06/18	Monthly	12/06/18	Monthly
NO, NO ₂ , NO _x	12/06/18	Monthly	12/06/18	Monthly
BTEX	27/06/18	Weekly	Every sample	On supply of flow controller ⁷
Wind Speed	12/06/18	Monthly	21/10/168	2-Yearly
Wind Direction	12/06/18	Monthly	21/10/168	2-Yearly

⁶ Wind tunnel calibration performed on 18/01/2016 and installed at station 3 on 06/02/2017.

⁷ Sampling flow orifice checks and calibrations performed by ALS for each orifice mass flow controller supplied. Records are held by Ecotech and available on request.

⁸ Wind tunnel calibration performed on 21/10/2016 and installed at station 4 on 22/11/2016.

Table 12: Station 5 Maintenance Table June 2018

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
PM ₁₀	18/06/18	Non-scheduled	07/03/18	6-Monthly
PM _{2.5}	14/06/18	Monthly	07/03/17	Yearly
Wind Speed	14/06/18	Monthly	15/04/16 ⁹	2-Yearly
Wind Direction	14/06/18	Monthly	15/04/16 ⁹	2-Yearly

 9 Wind tunnel calibration performed on 15/04/2016 and installed at station 5 on 27/01/2017.

4.0 Results

4.1. Valid Data Capture

Valid data capture refers to the amount of valid data collected during the report period. It is based on 5-minute data for all continuously monitored parameters, with the exception of $PM_{2.5}$. The $PM_{2.5}$ data is based on 1-hour data.

The percentage of valid data captured is calculated using the following equation:

Percentage Valid Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of samples (instrument readings) which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, equipment failures, planned and unplanned maintenance.
- Total data = Total number of samples (instrument readings) expected for the sampling period. Total data is calculated based on the same averaging period as "reported air quality data" and the duration of the corresponding report period. e.g. for 5-minute data collected over a month of 31 days, the total data would be equal to 12 (5-minute samples in an hour) x 24 (hours in a day) x 31 (days in a month) = 8928 samples.

Table 13 below displays data capture statistics for June 2018. **Bold** values in the table indicates the of percentage valid data capture below 85%.

Table 13: West Gate Tunnel Project Monthly Data Capture for June 2018

Parameter	st. 1 (%)	st. 2 (%)	st. 3 (%)	st. 4 (%)	st. 5 (%)
PM ₁₀	92.5	89.1	99.4	99.7	86.6
PM _{2.5}	92.4	93.2	99.6	99.4	99.9
WS, WD	93.0	93.8	100.0	100.0	99.9
СО	-	-	-	97.1	-
NO, NO ₂ , NO _x	-	-	-	97.9	-
ВТЕХ	-	-	-	100.0	-

4.2. Air Quality Monthly Summary

Tables 14 - 19 below include a summary of any air quality exceedances recorded at West Gate Tunnel Project during the report period.

Table 14: Station 1 Exceedances recorded for June 2018

Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance
PM ₁₀	1 day	50 μg/m³	None recorded	-	-
DNA	1 day	25/3	25 μg/m³ 2	33 μg/m³	27/06/18
PM _{2.5}	1 day	25 μg/πι		32 μg/m³	28/06/18
PM ₁₀	1 year	20 μg/m³	None recorded	-	-
PM _{2.5}	1 year	8 μg/m³	None recorded	-	-

Table 15: Station 2 Exceedances recorded for June 2018

Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance
PM ₁₀	1 day	60 μg/m³	None recorded	-	-
PM _a -	PM _{2.5} 1 day	36 μg/m³	2	38 μg/m³	27/06/18
r 1V12.5		30 μg/III		37 μg/m³	28/06/18

Table 16: Station 3 Exceedances recorded for June 2018

Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance
PM ₁₀	1 day	60 μg/m³	None recorded	-	-
PM _{2.5}	1 day	36 μg/m³	None recorded	-	-

Table 17: Station 4 Exceedances recorded for June 2018

Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance
PM ₁₀	1 day	60 μg/m³	None recorded	-	-
PM _{2.5}	1 day	36 μg/m³	None recorded	-	-
СО	1 hour	29 ppm	None recorded	-	-
NO ₂	1 hour	140 ppb	None recorded	-	-

Table 18: Station 4 readings above Monitoring Investigation Level recorded for June 2018

Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance
Toluene	1 day	1 ppm	None recorded	-	-
Xylenes	1 day	0.25 ppm	None recorded	-	-

Table 19: Station 5 Exceedances recorded for June 2018

Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance
PM ₁₀	1 day	60 μg/m³	None recorded	-	-
PM _{2.5}	1 day	36 μg/m³	None recorded	-	-

4.3. BTEX Analytical Results Summary

Table 20 below displays a summary of the analytical results for BTEX during the reporting period. Full analysis reports from ALS are included in Appendix 3. Results displayed as "<x ppb" indicated a reading below the lower detectable limit.

Table 20: Station 4 BTEX Analytical Results for June 2018

Parameter	NEMP MIL	Units	Samples			
Canister Number			C4757†	C4989	C12646†	C4759†
Sample Date			02/06/18	14/06/18	20/06/18	26/06/18
Final Vacuum		inHg	-3	-12	-3	-2
Benzene	3 (1 year)	ppb	<0.5	<0.5	<0.5	0.5
Toluene	1000 (1 day) 100 (1 Year)	ppb	1.8	0.6	2.7	14.2
Ethyl benzene	-	ppb	<0.5	<0.5	<0.5	<0.5
m,p-xylenes	250 (1 day)	ppb	<1.0	<1.0	<1.0	1.2
o-xylene	200 (1 Year)	ppb	<0.5	<0.5	<0.5	<0.5

[†]Sample flow may have decreased towards the end of the 24 hours sampling period. Therefore, the reported result may not be fully representative of the 24-hour average concentration.

4.4. Graphic Representations

Validated 5-minute data for NO, NO₂, NO_x, CO and PM₁₀, and validated 1-hour data for PM_{2.5} were used to construct the following monthly graphic representations.

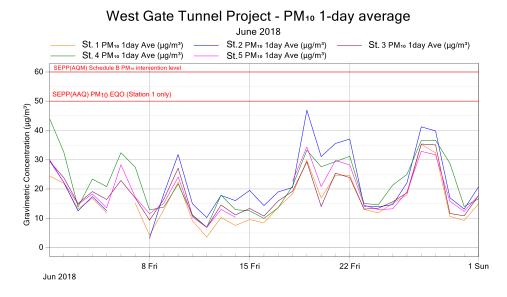


Figure 2: West Gate Tunnel Project - PM₁₀ 1-day Averages for June 2018

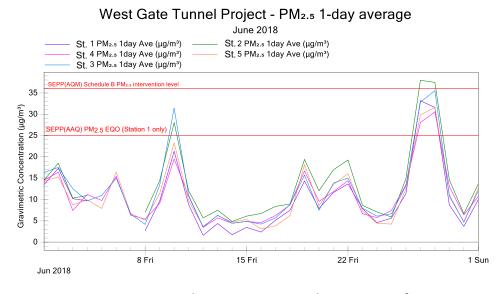


Figure 3: West Gate Tunnel Project - PM_{2.5} 1-day Averages for June 2018

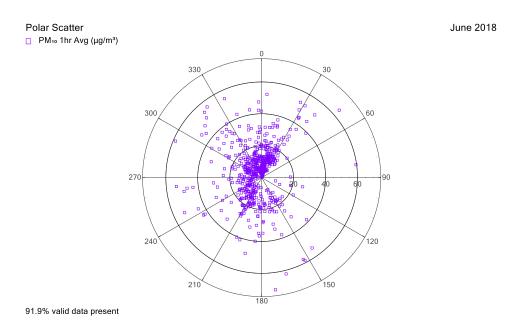


Figure 4: Station 1 - PM₁₀ 1-hour Averages scatter plot for June 2018

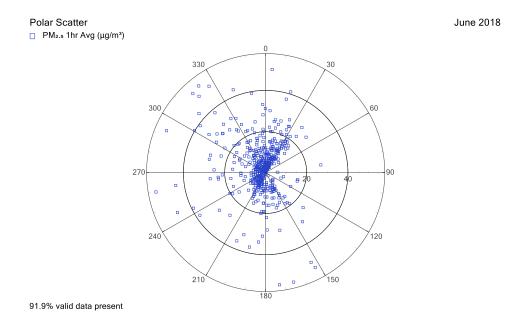


Figure 5: Station 1 - PM_{2.5} 1-hour Averages scatter plot for June 2018

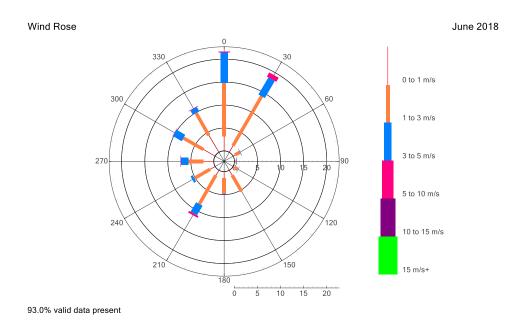


Figure 6: Station 1 - Monthly Wind Rose for June 2018

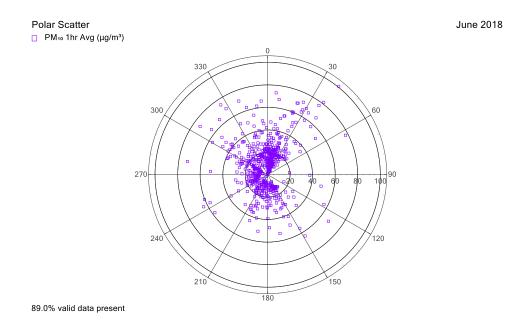


Figure 7: Station 2 - PM₁₀ 1-hour Averages scatter plot for June 2018

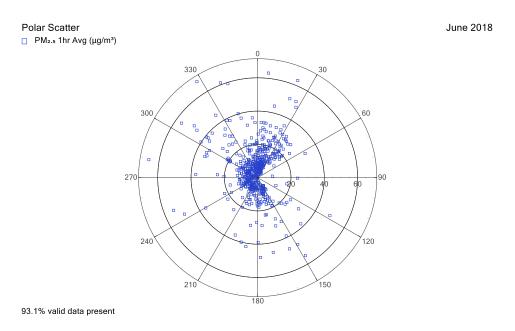


Figure 8: Station 2 - PM_{2.5} 1-hour Averages scatter plot for June 2018

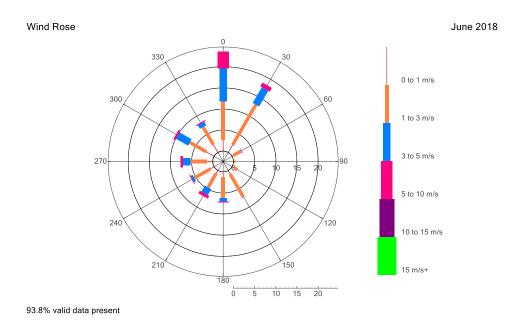


Figure 9: Station 2 - Monthly Wind Rose for June 2018

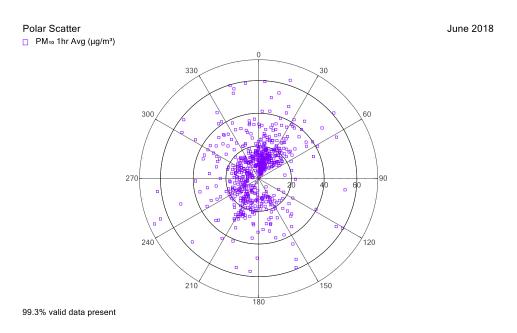


Figure 10: Station 3 - PM₁₀ 1-hour Averages scatter plot for June 2018

Figure 11: Station 3 - PM_{2.5} 1-hour Averages scatter plot for June 2018

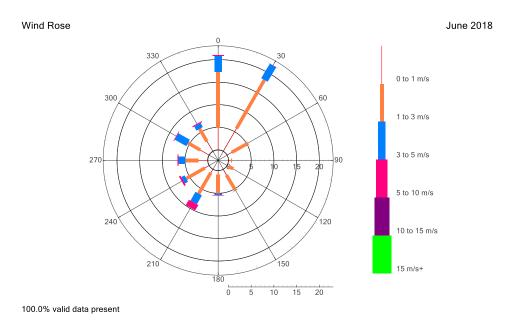


Figure 12: Station 3 - Monthly Wind Rose for June 2018

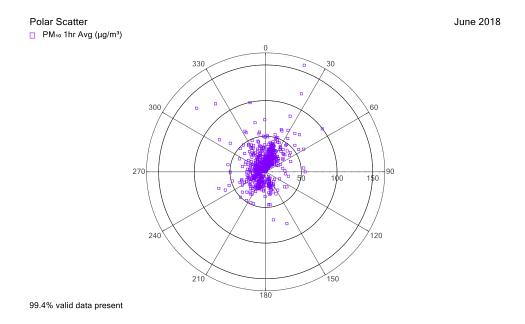


Figure 13: Station 4 - PM₁₀ 1-hour Averages scatter plot for June 2018

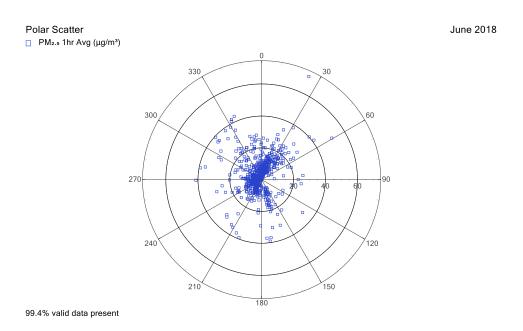


Figure 14: Station 4 - PM_{2.5} 1-hour Averages scatter plot for June 2018

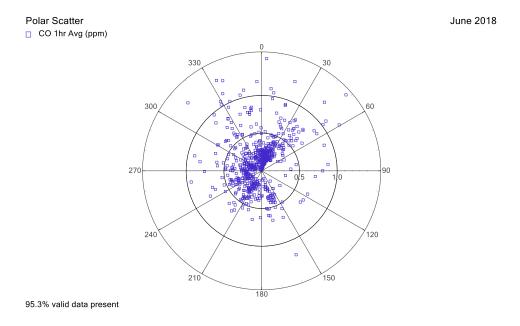


Figure 15: Station 4 - CO 1-hour Averages scatter plot for June 2018

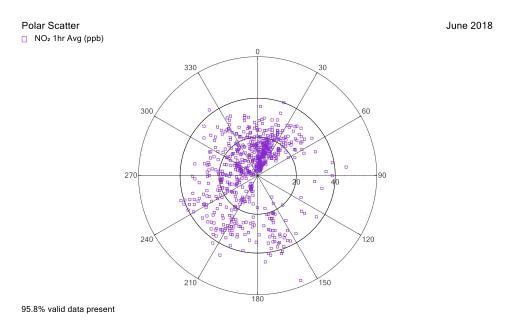


Figure 16: Station 4 - NO₂ 1-hour Averages scatter plot for June 2018

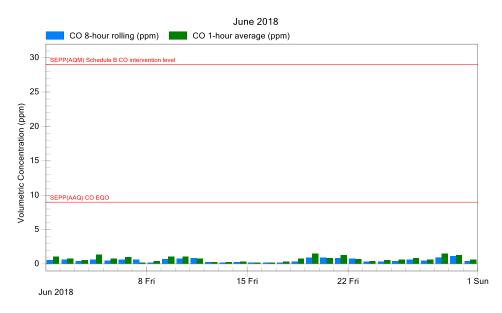


Figure 17: Station 4 – CO daily maximum based on 1-hour and 8-hour rolling Averages for June 2018

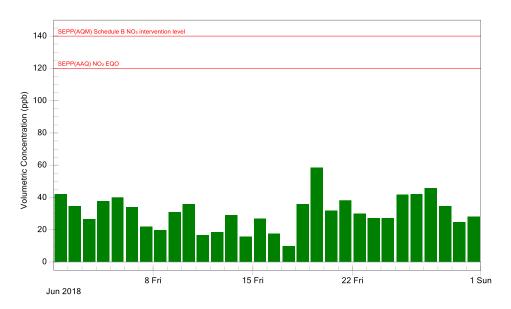


Figure 18: Station 4 - NO₂ daily maximum based on 1-hour Averages for June 2018

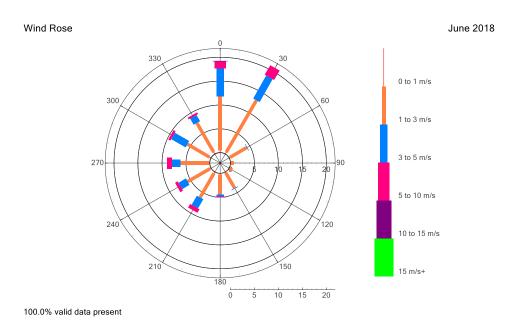


Figure 19: Station 4 - Monthly Wind Rose for June 2018

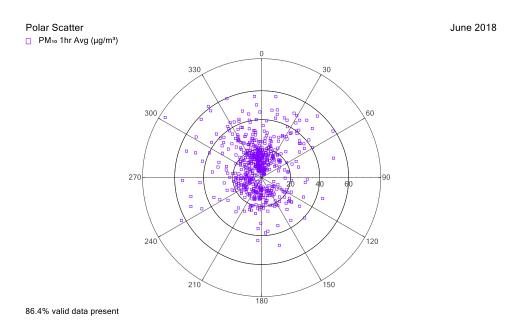


Figure 20: Station 5 - PM₁₀ 1-hour Averages scatter plot for June 2018

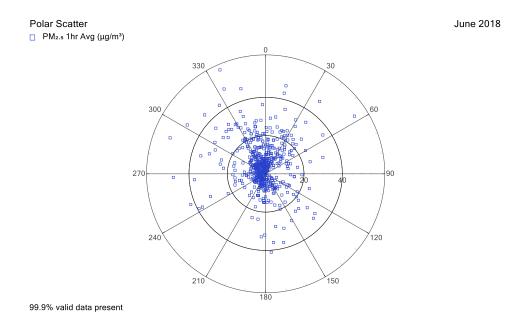


Figure 21: Station 5 - PM_{2.5} 1-hour Averages scatter plot for June 2018

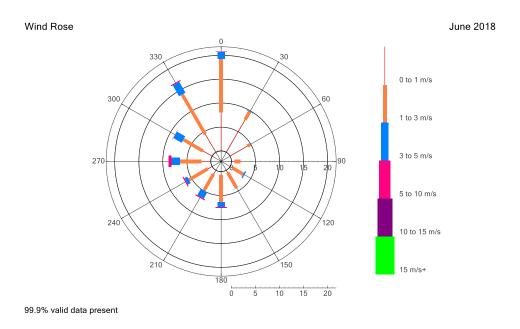


Figure 22: Station 5- Monthly Wind Rose for June 2018

5.0 Valid Data Exception Table

Tables 21 - 25 below detail all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 21: Station 1 Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
05/06/18 10:20	05/06/18 12:50	Non-scheduled maintenance - Station decommissioned	All parameters	DL	20/07/18
05/06/18 12:55	07/06/18 11:55	Station offline	All parameters	DL	20/07/18
07/06/18 12:00	07/06/18 17:00	Non-scheduled maintenance - Station re- commissioned	All parameters	DL	20/07/18
12/06/18 15:50	12/06/18 16:10	Unrealistic data - WS spikes and not tracking with other sites	WS & WD	DL	20/07/18
21/06/18 11:30	21/06/18 13:50	Non-scheduled maintenance - Wind sensor swapped out for wind tunnel calibration (Instrument ID: WS-0531 OUT, 11-0309 IN)	WS & WD	DL	20/07/18

Table 22: Station 2 Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
05/06/18 14:00	05/06/18 15:20	Non-scheduled maintenance - Station decommissioned	All parameters	DL	20/07/18
05/06/18 15:25	07/06/18 09:55	Station offline	All parameters	DL	20/07/18
07/06/18 10:00	07/06/18 15:25	Non-scheduled maintenance - Station re- commissioned	All parameters	DL	20/07/18
07/06/18 10:55	08/06/18 15:05	Intermittent wind data re-validated due to the logger incorrectly flagging the data when the TEOM instrument offline	WS & WD	DL	20/07/18
07/06/18 15:30	08/06/18 15:05	Instrument fault - TEOM firmware lost	PM ₁₀	DL	20/07/18
08/06/18 15:10	08/06/18 15:25	Data affected during maintenance	WS & WD	DL	20/07/18

Start Date	End Date	Reason	Change Details	User Name	Change Date
08/06/18 15:10	08/06/18 21:20	Non-scheduled maintenance - TEOM control unit replaced and stabilisation (Instrument ID: 00-0593 OUT, AL-0011 IN)	PM ₁₀	DL	08/06/18 15:10

Table 23: Station 3 Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
04/06/18 07:45	04/06/18 07:45	Unrealistic data - WS spikes and not tracking with other sites	WS & WD	DL	20/07/18
12/06/18 02:00	12/06/18 02:55	Brief power interruption and subsequent instrument stabilisation	PM _{2.5} , PM ₁₀	DL	20/07/18
12/06/18 10:00	12/06/18 15:00	Scheduled monthly maintenance	PM _{2.5} , PM ₁₀	DL	20/07/18

Table 24: Station 4 Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/06/18 12:00	01/06/18 12:00	Scheduled weekly maintenance - BTX TO-15 Canister installed	No data affected	DL	20/07/18
02/06/18 00:30	02/06/18 23:30	Sample 4757 flow final vacuum was low. Sample flow may have decreased towards the end of the 24 hours sampling period. Therefore, the reported result may not be fully representative of the 24 hours average concentration	BTX TO-15	DL	20/07/18
02/06/18 01:30	30/06/18 01:30	Additional instrument stabilisation following the automatic span checks	СО	DL	20/07/18
05/06/18 16:00	05/06/18 16:00	Scheduled weekly maintenance - BTX TO-15 Canister removed	No data affected	DL	20/07/18
12/06/18 12:00	12/06/18 14:35	Scheduled monthly maintenance	PM ₁₀ , PM _{2.5} , CO, NO, NO ₂ , NO _x	DL	20/07/18
12/06/18 15:30	12/06/18 15:40	Additional background check following the maintenance	СО	DL	20/07/18

Start Date	End Date	Reason	Change Details	User Name	Change Date
14/06/18 11:55	14/06/18 13:00	Brief power interruption and subsequent instrument stabilisation	WS, WD, PM _{2.5} , PM ₁₀	DL	20/07/18
14/06/18 23:40	15/06/18 23:30	Static offset of +0.1ppm applied to correct baseline	со	DL	20/07/18
15/06/18 17:00	15/06/18 17:00	Unrealistic data - WS spikes and not tracking with other sites	WS & WD	DL	20/07/18
15/06/18 23:40	16/06/18 23:30	Static offset of +0.2ppm applied to correct baseline	СО	DL	20/07/18
17/06/18 01:30	17/06/18 23:30	Linear offset of A = 0ppm and B = -0.1ppm to correct baseline	со	DL	20/07/18
18/06/18 01:30	19/06/18 00:55	Linear offset of A = +0.1ppm and B = -0.2ppm to correct baseline	СО	DL	20/07/18
18/06/18 13:35	18/06/18 14:00	Non-scheduled maintenance - TEOM filter re- fitted and BTX TO-15 Canister changed over	PM ₁₀	DL	20/07/18
19/06/18 23:40	20/06/18 23:30	Static offset of +0.5ppm applied to correct baseline	СО	DL	20/07/18
20/06/18 00:30	20/06/18 23:30	Sample 12646 flow final vacuum was low. Sample flow may have decreased towards the end of the 24 hours sampling period. Therefore, the reported result may not be fully representative of the 24 hours average concentration	BTX TO-15	DL	20/07/18
22/06/18 23:40	23/06/18 23:30	Linear offset of A = $+0.5$ ppm and B = $+0.2$ ppm to correct baseline	СО	DL	20/07/18
24/06/18 23:40	25/06/18 23:30	Static offset of +0.7ppm applied to correct baseline	СО	DL	20/07/18
25/06/18 09:00	25/06/18 09:00	Scheduled weekly maintenance - BTX TO-15 Canister changed over	No data affected	DL	20/07/18
25/06/18 22:10	25/06/18 22:25	Unrealistic data - Possible Moisture Interference	PM ₁₀	DL	20/07/18
25/06/18 23:40	26/06/18 23:30	Linear offset of A = +0.6ppm and B = -0.2ppm to correct baseline	СО	DL	20/07/18

Start Date	End Date	Reason	Change Details	User Name	Change Date
26/06/18 00:30	26/06/18 23:30	Sample 4759 flow final vacuum was low. Sample flow may have decreased towards the end of the 24 hours sampling period. Therefore, the reported result may not be fully representative of the 24 hours average concentration	BTX TO-15	DL	20/07/18
27/06/18 01:30	27/03/18 23:30	Linear offset of A = +0.3ppm and B = -0.5ppm to correct baseline	СО	DL	20/07/18
27/06/18 17:00	27/06/18 17:00	Scheduled weekly maintenance - BTX TO-15 Canister changed over	No data affected	DL	20/07/18
28/06/18 01:30	28/06/18 23:30	Static offset of +0.5ppm applied to correct baseline	СО	DL	20/07/18
29/06/18 23:40	01/07/18 00:00	Static offset of +0.2ppm applied to correct baseline	СО	DL	20/07/18

Table 25: Station 5 Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/06/18 07:50	22/06/18 10:00	Intermittent unrealistic data - WS spikes and not tracking with other sites	WS & WD	DL	20/07/18
14/06/18 13:00	14/06/18 14:35	Scheduled monthly maintenance	PM _{2.5} , PM ₁₀	DL	20/07/18
14/06/18 14:40	18/06/18 13:10	Unrealistic data - Data affected by filter not seated correctly	PM ₁₀	DL	20/07/18
18/06/18 13:15	18/06/18 14:15	Non-scheduled maintenance - TEOM filter re- fitted	PM ₁₀	DL	20/07/18

6.0 Report Summary

- The percentage of valid data capture for all parameters at West Gate Tunnel Project monitoring network was above 85% for the reporting month.
- The flow final vacuum of canisters sampled on the 2nd, 20th and 26th of June 2018 were low. The sample flow may have decreased towards the end of the 24 hours sampling period. Therefore, the reported results may not be fully representative of the 24-hour average concentration. Refer to Table 20 for more details.
- Two recorded 24-hour PM_{2.5} readings at Station 1 exceeded the SEPP(AAQ) EQO levels during the reporting period. Refer to Table 14 for more details.
- Two recorded 24-hour PM_{2.5} readings at Station 2 exceeded the SEPP(AQM) Schedule B intervention levels during the reporting period. Refer to Table 15 for more details.

Appendix 1 - Definitions & Abbreviations

Micrograms per cubic metre at standard temperature and pressure (0°C μg/m³

and 101.3 kPa)

Benzene, Toluene, Ethyl Benzene and Xylene *ortho-, meta-* and *para-*

isomers

Wind conditions where the wind speed is below the operating range of the calm

wind sensor

CO Carbon monoxide

deg Degrees (True North)

m/s Metres per second

NO Nitric oxide

NO₂ Nitrogen dioxide

NO_x Oxides of nitrogen

PM₁₀ Particulate less than 10 microns in equivalent aerodynamic diameter

PM_{2.5} Particulate less than 2.5 microns in equivalent aerodynamic diameter

ppb Parts per billion

ppm Parts per million

SEPP (AAQ) EQO
State Environmental Protection Policy (Ambient Air Quality) Environmental

Quality Objectives

SEPP (AQM) State Environmental Protection Policy (Air Quality Management)

Sigma Theta is the standard deviation of the horizontal wind direction

fluctuations over the averaging period.

WD Vector Wind Direction

WS Vector Wind Speed

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Beta count failure refers to a fault in the functioning of the beta attenuation monitor.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance.

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Overnight zero out of tolerance refers to when the automatic zero reading measured by the analyser falls outside the expected limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Tape break refers to the breaking of the beta attenuation monitor sample tape during operation.

Warm up after power interruption refers to the start up period of an instrument after power has been restored.

Appendix 3 – BTEX Analytical Results

CERTIFICATE OF ANALYSIS

Work Order : EN1803682

: ECOTECH PTY LTD

Contact : MS LARA NICHOLAS

Address : 1492 FERNTREE GULLY ROAD

KNOXFIELD VICTORIA, AUSTRALIA 3180

Telephone : +61 03 9730 7800
Project : WD4 PRIMULA AVE

Order number : 235939

C-O-C number : ----

Client

Sampler : DANIEL RAYMOND

Site : ---

Quote number : NE/070/17

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 4

Laboratory : Environmental Division Newcastle

Contact : Hayley Withers

Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

Telephone : +612 4014 2500
Date Samples Received : 15-Jun-2018 09:55

Date Analysis Commenced : 19-Jun-2018

Issue Date : 21-Jun-2018 16:06

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dale Semple Analyst Newcastle - Organics, Mayfield West, NSW

Dale Semple Analyst Newcastle, Mayfield West, NSW

Daniel Junek Senior Air Analyst Newcastle - Organics, Mayfield West, NSW

Page : 2 of 4
Work Order : EN1803682

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP101: Results reported in µg/m³ are calculated from PPBV results based on a temperature of 25°C and atmospheric pressure of 101.3 kPa.
- CAN-001: Results for Pressure As Received are measured under controlled conditions using calibrated laboratory gauges. These results are expressed as an Absolute Pressure. Equivalent gauge pressures may be calculated by subtracting the Pressure Laboratory Atmosphere taken at the time of measurement.
- CAN-001: Results for Pressure Gauge as Received are obtained from uncalibrated field gauges and are indicative only. These results may not precisely match calibrated gauge readings and may vary from field measurements due to changes in temperature and pressure

Page : 3 of 4
Work Order : EN1803682

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Analytical Results

Compound CAS Number LOR Unit EN1803682-001 EN1803682-002 EN1803682-003	
Result Result	
EP101: VOCs by USEPA Method TO15 (Calculated Concentration)	
Benzene 71-43-2 1.6 μg/m³ <1.6 <1.6 <1.6	
Toluene 108-88-3 1.9 μg/m³ 3.0 4.5 6.8	
Ethylbenzene 100-41-4 2.2 μg/m³ <2.2	
meta- & para-Xylene 108-38-3 106-42-3 4.3 μg/m³ <4.3 <4.3	
ortho-Xylene 95-47-6 2.2 μg/m³ <2.2	
Naphthalene 91-20-3 2.6 μg/m³ <2.6	
Total Xylenes 6.6 μg/m³ <6.6 <6.6	
EP101: VOCs by USEPA Method TO15r	
Benzene 71-43-2 0.5 ppbv <0.5	
Toluene 108-88-3 0.5 ppbv 0.8 1.2 1.8	
Ethylbenzene 100-41-4 0.5 ppbv <0.5	
meta- & para-Xylene 108-38-3 106-42-3 1.0 ppbv <1.0	
ortho-Xylene 95-47-6 0.5 ppbv <0.5	
Naphthalene 91-20-3 0.5 ppbv <0.5	
Total Xylenes 1.5 ppbv <1.5	
Sampling Quality Assurance	
Pressure - As received PRESSURE 0.1 kPaa 91.7 88.2 100	
Pressure - Gauge as Received 1 Inches Hg -6 -4 -3	
Pressure - Laboratory Atmosphere 0.1 kPaa 102 102 102	
Temperature as Received 0.1 °C 16.0 16.0 16.0	
USEPA Air Toxics Method TO15r Surrogates	
4-Bromofluorobenzene 460-00-4 0.5 % 101 100 99.4	

Page : 4 of 4
Work Order : EN1803682

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Surrogate Control Limits

Sub-Matrix: AIR		Recovery	Limits (%)
Compound	CAS Number	Low	High
USEPA Air Toxics Method TO15r Surrogates			
4-Bromofluorobenzene	460-00-4	60	140

QUALITY CONTROL REPORT

Work Order : EN1803682

: ECOTECH PTY LTD

Contact : MS LARA NICHOLAS

Address : 1492 FERNTREE GULLY ROAD

KNOXFIELD VICTORIA, AUSTRALIA 3180

Telephone : +61 03 9730 7800
Project : WD4 PRIMULA AVE

Order number : 235939

C-O-C number : ---

Sampler : DANIEL RAYMOND

Site : ---

Quote number : NE/070/17

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 3

Laboratory : Environmental Division Newcastle

Contact : Hayley Withers

Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

Telephone : +612 4014 2500

Date Samples Received : 15-Jun-2018

Date Analysis Commenced : 19-Jun-2018

Issue Date : 21-Jun-2018

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report; Recovery and Acceptance Limits

Signatories

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dale Semple	Analyst	Newcastle - Organics, Mayfield West, NSW
Dale Semple	Analyst	Newcastle, Mayfield West, NSW
Daniel Junek	Senior Air Analyst	Newcastle - Organics, Mayfield West, NSW

Page : 2 of 3 Work Order : EN1803682

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: AIR	ub-Matrix: AIR				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound CAS Number		LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP101: VOCs by USEPA Method TO15r (QC Lot: 1737162)											
EN1803682-001	210518 C4990_S2837	EP101-H: Benzene	71-43-2	0.5	ppbv	<0.5	<0.5	0.00	No Limit		
		EP101-H: Toluene	108-88-3	0.5	ppbv	0.8	0.8	0.00	No Limit		
		EP101-H: Ethylbenzene	100-41-4	0.5	ppbv	<0.5	<0.5	0.00	No Limit		
		EP101-H: ortho-Xylene	95-47-6	0.5	ppbv	<0.5	<0.5	0.00	No Limit		
		EP101-H: meta- & para-Xylene	108-38-3	1	ppbv	<1.0	<1.0	0.00	No Limit		
			106-42-3								

Page : 3 of 3 Work Order : EN1803682

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control terms Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (DCS) refers to certified reference materials, or known interference free matrices spiked with target analytes. The purpose of these QC parameters are to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS and DCS.

Sub-Matrix: AIR		Method Blank (MB) Report Laboratory Control Spike (LCS) and Laboratory Control Spike Dupli					Spike Duplica	te (DCS) Report			
					Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPL	Os (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP101: VOCs by USEPA Method TO15r (QCLot: 1737162)											
EP101-H: Benzene	71-43-2	0.5	ppbv	<0.5	100 ppbv	96.8	97.5	77	114	25	25
EP101-H: Toluene	108-88-3	0.5	ppbv	<0.5	100 ppbv	99.4	99.4	78	115	25	25
EP101-H: Ethylbenzene	100-41-4	0.5	ppbv	<0.5	100 ppbv	94.1	94.2	82	121	25	25
EP101-H: meta- & para-Xylene	108-38-3	1	ppbv	<1.0	200 ppbv	91.8	91.5	82	122	25	25
	106-42-3										
EP101-H: ortho-Xylene	95-47-6	0.5	ppbv	<0.5	100 ppbv	93.4	93.6	83	122	25	25

[•] No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EN1803682** Page : 1 of 4

Client : ECOTECH PTY LTD Laboratory : Environmental Division Newcastle

 Contact
 : MS LARA NICHOLAS
 Telephone
 : +612 4014 2500

 Project
 : WD4 PRIMULA AVE
 Date Samples Received
 : 15-Jun-2018

 Site
 :--- Issue Date
 : 21-Jun-2018

Sampler : DANIEL RAYMOND No. of samples received : 3

Order number : 235939 No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4 Work Order : EN1803682

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: AIR

Evaluation: **x** = Holding time breach : ✓ = Within holding time.

Watth. All				Lvaluation	. • - Holding time	breach, with	ii noluling tiin
Method	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP101: VOCs by USEPA Method TO15r							
Summa style Canister - ALS Supplied Silonite (EP101-H) 020618 - C4757_S2856	02-Jun-2018				19-Jun-2018	02-Jul-2018	✓
Summa style Canister - ALS Supplied Silonite (EP101-H) 210518 - C4990_S2837	21-May-2018				19-Jun-2018	20-Jun-2018	1
Summa style Canister - ALS Supplied Silonite (EP101-H) 290518 - C12621_C1621	29-May-2018				19-Jun-2018	28-Jun-2018	1
Sampling Quality Assurance							
Summa style Canister - ALS Supplied Silonite (CAN-001) 020618 - C4757_S2856	02-Jun-2018				19-Jun-2018	02-Jun-2019	✓
Summa style Canister - ALS Supplied Silonite (CAN-001) 210518 - C4990_S2837	21-May-2018				19-Jun-2018	21-May-2019	✓
Summa style Canister - ALS Supplied Silonite (CAN-001) 290518 - C12621_C1621	29-May-2018				19-Jun-2018	29-May-2019	✓

Page : 3 of 4 Work Order EN1803682

Client ECOTECH PTY LTD Project WD4 PRIMULA AVE

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: AIR Evaluation: x = Quality Control frequency not within specification; ✓ = Quality Control frequency									
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification		
Analytical Methods	Method	ОC	Regular	Actual	Expected	Evaluation			
Duplicate Control Samples (DCS)									
Hydrocarbons in Air by USEPA TO15	EP101-H	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Laboratory Duplicates (DUP)									
Hydrocarbons in Air by USEPA TO15	EP101-H	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Laboratory Control Samples (LCS)									
Hydrocarbons in Air by USEPA TO15	EP101-H	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Method Blanks (MB)									
Hydrocarbons in Air by USEPA TO15	EP101-H	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		

Page : 4 of 4 Work Order : EN1803682

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Canister Sampling - Field Data	CAN-001	AIR	In house: Referenced to USEPA TO14 / TO15
Hydrocarbons in Air by USEPA TO15	EP101-H	AIR	In house: Referenced to USEPA TO15r Volatile Organic Compounds in Air by USEPA TO15. Aliphatic and Aromatic Hydrocarbons
Hydrocarbons in Air by USEPA TO15 (mass/volume)	EP101-H-MV	AIR	In house: Referenced to USEPA TO15r Hydrocarbons in Air by USEPA TO15 (Calculated Concentration)

(ALS)

AIR CANISTER CHAIN OF CUSTODY

If sourced from an ALS Laboratory: please tick →

DASE ADE 21 Euros Road Populas SA 5095 Ph. 02.3750 0000 E. adomáció disaligados

DOFFISE THE CRYPT Street Stattord GLD 1960.
Ph. 67-1201, 7000 E. Samples Instancigategistration
DISLADSTONE: 48 Callemondal: Drive Cliento GLB 4500
Ph. 67-121, 5400 F. gladetine@alsybbal.com

⊒MANCK & 73 Barbon Brad Mankay (P.C. 2749 Ph. 674944 6177 E. negskay@alsolchat.com

LINEL BOURNET 2.4 Westet Road Sprins am viit. 0.71 Ph. 60-8744 95806 E. samples methodin et/autocational DBUDGEC 1925 Swiney Road Mudocation 95W 2006 Ph. 30-8472-8755 E. mudgice methodiskub balloom TOUL: APYGOO8044

DIEWONTE SSSS Halland Boad Govered West HISSY 2244
TO COUNTY STORE Advantage agreement Goldenbergers

DNOWAR All I Geary Place both Howarts W 25at

Pri 02 4423 2063 E nawrai@alsalobal one

DS: DNE - 277.200 (Vegdeal) Road Shelthfield MSW 2184 for its 2484 6556 billion applies evides vigalizable con- 2700/MSSVI E. 18.15 Desma Court Robe QLD 4816 for its 4756 000 billions will be invitorismic@bloglobsloom.

TIPEREN 10 Hod Wav Malaga (VA 9050) Ph. 06 9005 7855 E. samples north-Malagnipal com-DIVOLLONGONIS 99 Kenny Street Viellangung NSV/ 2500 Ph 102 4325 3125 E. wellongong@alsolabal.com Client Supplied Canister(s)? CLIENT: ECOTECH TURNAROUND REQUIREMENTS: ☐ Standard TAT (List due date): LABORATORY USE ONLY (Circle) OFFICE: 1492 Ferntree Gully Rd, KNOXFIELD VIC (Standard TAT may be extended for multiple ☐ Non Standard or urgent TAT (List due date): sequential analysis suites) Custody Seal Intact? Rec'Lab Y / N NEW / N PROJECT: WD4 PRIMULA AVE ALS QUOTE NO.: NE/070/17 COC SEQUENCE NUMBER (Circle) Receipt? PURCHASE ORDER NC 235939 COUNTRY OF ORIGIN Canister/Sampler Complete and Not Damaged PROJECT MANAGER: Lara Nicholas CONTACT PH: 03 9370 7845 0417351053 Other comment: Temperature: C SAMPLER: Daniel Raymond SAMPLER MOBILE: 0419424932 RELINCUISHED BY: RELINQUISHED BY: RELINQUISHED BY: RELINQUISHED BY: COC Emailed to ALS? (YES / NO) EDD FORMAT (or default): Email Reports to (will default to PM if no other addresses are listed): lara.nicholas@ecotech.com, daniel.raymond@ecotech.com RECEIVED BY: RECEIVED BY RECEIVED BY: RECFIVED BY: Email Invoice to (will default to PM if no other addresses are listed): naomi.dans@ecotech.com KM 14/6/18 10an COMMENTS/SPECIAL HANDLING/REPLACEMENT OR RETURN INSTRUCTIONS: 2nd box. 15/6/18 9.55 updated COC-15/6/18 2.20pm GAS SAMPLE CONTAINER INFORMATION Canister Gauge Refer to Canister Verification Reports and **ANALYSES REQUESTED** Pressures (PSI) COAs for pressures measured by the Lak Additional Information ALS USE ONL CANISTER / SAMPLE DETAILS Reporting Requirements Suite Codes must be listed to attract suite price FLOW Pro. Post CANISTER MATRIX Comments on LORs required, potential LORs LAB ID DATE / TIME Units CONTROLLER CLIENT SAMPLE ID Sampling Sampling VI-V1 SERIAL NO. eg Air, So hazards, likely contaminant levels, or samples SAMPLED SERIAL NO. Ambient Soil Gus **BTEXN** Gasi ppby, ppmy requiring specific QC analysis etc. (LOR defaults to routine method LOR after dilution) 21/05/18 00:30 -4990 2837 210518 AIR 30 6 X X X 23:30 29/05/18 00:30 12621 1621 290518 AIR 30 X х x 23:30 4757 2/06/18 00:30 2856 020618 ΔIR 32 3 X х X 23:30 Environmental Division Newcastle Work Order Reference EN1803682 Telephone: +61 2 4014 2500 Job Specific instructions: Ecotech Timers Sent with samples to be cleaned with nitrogen and returned with new canisters

Gamarag Varidomidom Racionis de és

Canister No: 4757

Specified Purpose: USEPA TO15 (Extended Suite)

Ambient Air

Verification Date: 23-May-2018 Valid To (At least): 20-Jun-2018

Verification File: 180523_03.D

Canister Type: Entech Silonite - Summa Style Canister Size:

Valve Type: Nupro Dispatch Pressure: <0.01 psia **Last Stability Check:** 01-May-2018 **Next Check Scheduled:** 30-Apr-2020 Analyst: K. Gelderman

5/18 241 Approved for Dispatch by:

Canister Verification Protocol Canistes so willed three purpose for the residence analysis and applications if knowns canistes are cartied commissionling to the residence of 1914-seesed 1972

Each verification in occount cases, for some samination, lauks and camage to income State by infresed and parki years to if damage to the complete in adaptacles, then extremen years, within the designated licining time inceres me ex can have expected of including the horses themicals without sagificant degradation.

.			Verification				
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result			
			ppbv	ppbv			
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform		0.2	<0.2			
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride		0.2	<0.2			
1,1,2-Trichloroethane	Vinyl trichloride		0.2	<0.2			
1,1-Dichloroethane	Ethylidene chloride		0.2	<0.2			
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride		0.2	<0.2			
1,2-Dichloroethane	Ethylene chloride		0.2	<0.2			
1,2,4-Trimethylbenzene	Pseudocumene		0.2	<0.2			
1,2-Dibromoethane	EDB / Ethylene dibromide		0.2	<0.2			
1,2-Dichlorobenzene	o-Dichlorobenzene		0.2	<0.2			
1,2-Dichloropropane	Propylene dichloride		0.2	<0.2			
1,3,5-Trimethylbenzene	Mesitylene		0.2	<0.2			
1,3-Dichlorobenzene	m-Dichlorobenzene		0.2	<0.2			
1,4-Dichlorobenzene	p-Dichlorobenzene		0.2	<0.2			
Benzene	Cyclohexatriene		0.2	<0.2			
Bromomethane	Methyl bromide		0.2	<0.2			
Tetrachloromethane	Carbon tetrachloride		0.2	<0.2			
Chlorobenzene	Phenyl chloride		0.2	<0.2			
Chloroethane	Ethyl chloride		0.2	<0.2			
Chloroform	Trichloromethane		0.2	<0.2			
Chloromethane	Methyl chloride		0.2	<0.2			
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene		0.2	<0.2			
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene		0.2	<0.2			
Ethylbenzene	Phenyl ethane		0.2	<0.2			
Freon 12	Dichlorodifluoromethane		0.2	<0.2			
₃on 11	Trichlorofluoromethane		0.2	<0.2			
∵reon 113	1,1,2-Trichloro-1,2,2-trifluoroethane		0.2	<0.2			
Freon 114	1,2-Dichlorotetrafluoroethane		0.2	<0.2			
Hexachlorobutadiene	Hexachloro-1,3-Butadiene		0.2	<0.2			

				·
			Verification	_
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result
D: 11			ppbv	ppbv
Dichloromethane	Methylene chloride		0.2	<0.2
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene		0.4	<0.4
o-Xylene	1,2-Dimethylbenzene		0.2	<0.2
Styrene Tetrachloroethene	Vinyl benzene		0.2	<0.2
Toluene	PCE / Perchlorethylene		0.2	<0.2
	Methyl Benzene		0.2 0.2	<0.2
trans-1,3-Dichloropropene Trichloroethene	trans-1,3-Dichloropropylene			<0.2
Vinyl chloride	TCE / Trichloroethylene Chloroethene		0.2 0.2	<0.2 <0.2
1,2,4-Trichlorobenzene	Chioroetterie		0.2	<0.2
1,3-Butadiene	Biethylene		0.2	<0.2
1,4-Dioxane	p-Dioxane		0.2	<0.2
2,2,4-Trimethylpentane	Isooctane		0.2	<0.2
4-Ethyltoluene	p-Ethyltoluene		0.2	<0.2
Acetone	2-Propanone		0.2	<0.2
Allyl chloride	3-Chloropropene		0.2	<0.2
Bromodichloromethane	Dichlorobromomethane		0.2	<0.2
Bromoform	Tribromomethane		0.2	<0.2
Carbon disulfide	CS2		0.2	<0.2
Cyclohexane	002		0.2	<0.2
Dibromochloromethane	Chlorodibromoethane		0.2	<0.2
Ethyl acetate	Acetic ester		0.2	<0.2
Isopropyl alcohol	Isopropanol / 2-Propanol		0.2	<0.2
Methyl butyl ketone	MBK / 2-Hexanone		0.2	<0.2
Methyl ethyl ketone	MEK / 2-Butanone		0.2	<0.2
Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone		0.2	<0.2
Methyl tert-butyl ether	MTBE		0.2	<0.2
n-Heptane	2_		0.2	<0.2
n-Hexane			0.2	<0.2
Propene	Propylene		0.2	<0.2
Tetrahydrofuran	THE		0.2	<0.2
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene		0.2	<0.2
Vinyl acetate	Acetic acid vinyl ester		0.2	<0.2
Bromoethene	Vinyl bromide		0.2	<0.2
Benzyl chloride	a-Chlorotoluene		0.2	<0.2
Ethanol	Ethyl alcohol		0.2	<0.2
Acetonitrile	Methyl cyanide		0.2	<0.2
Acrolein	2-Propenal		0.2	<0.2
Acrylonitrile	2-Propenenitrile		0.2	<0.2
tert-Butyl alcohol	TBA		0.2	<0.2
2-Chloroprene	2-Chloro-1,3-butadiene		0.2	<0.2
Diisopropyl Ether	DIPE		0.2	<0.2
Ethyl tert-butyl ether	ETBE		0.2	<0.2
tert-Amyl methyl ether	TAME		0.2	<0.2
Methyl methacrylate	MMA		0.2	<0.2
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride		0.2	<0.2
Isopropylbenzene	Cumene		0.2	<0.2
2-Chlorotoluene	o-Chlorotoluene		0.2	<0.2
n-Propylbenzene	Phenyl propane		0.2	<0.2
tert-Butylbenzene	1,1-Dimethylethylbenzene		0.2	<0.2
sec-Butylbenzene	1-Methylpropylbenzene		0.2	<0.2
2-Isopropyltoluene	o-Cymene		0.2	<0.2
n-Butylbenzene	Phenyl butane		0.2	<0.2
Naphthalene			0.2	<0.2

Sampler No: 2856

Specified Purpose:

USEPA TO15 (Extended Suite)

LORs Required: Sampler Type:

Ambient Air

Passive Sampler

Verification Date: Valid To (At least): Verification File:

23-May-2018 20-Jun-2018 180523_03.D

Flow Rate Calibrated at: 3.5 mc/min

Analyst:

K. Gelderman

Calibrated by: PF 23/5/18

Approved for Dispatch by:

Sampler Verification Protocol
sampler or generally sense id ill the purchasion induces a costand applications afformation against cost
samplers are equificate paracoolding to the requirements of the parachest of the

Each restriction is solves a check for costan tradion, leaves and camage to Stonga

Target Compound	Alt. Name	Verified to	Result
		ppbv	ppbv
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform	0.2	<0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride	0.2	<0.2
1,1,2-Trichloroethane	Vinyl trichloride	0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride	0.2	<0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride	0.2	<0.2
1,2-Dichloroethane	Ethylene chloride	0.2	<0.2
1,2,4-Trimethylbenzene	Pseudocumene	0.2	<0.2
1,2-Dibromoethane	EDB / Ethylene dibromide	0.2	<0.2
1,2-Dichlorobenzene	o-Dichlorobenzene	0.2	<0.2
1,2-Dichloropropane	Propylene dichloride	0.2	<0.2
1,3,5-Trimethylbenzene	Mesitylene	0.2	< 0.2
1,3-Dichlorobenzene	m-Dichlorobenzene	0.2	<0.2
1,4-Dichlorobenzene	p-Dichlorobenzene	0.2	<0.2
Benzene	Cyclohexatriene	0.2	<0.2
Bromomethane	Methyl bromide	0.2	<0.2
Tetrachloromethane	Carbon tetrachloride	0.2	<0.2
Chlorobenzene	Phenyl chloride	0.2	<0.2
Chloroethane	Ethyl chloride	0.2	<0.2
Chloroform	Trichloromethane	0.2	<0.2
Chloromethane	Methyl chloride	0.2	<0.2
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene	0.2	<0.2
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene	0.2	<0.2
~thylbenzene	Phenyl ethane	0.2	<0.2
∴rëon 12	Dichlorodifluoromethane	0.2	<0.2
Freon 11	Trichlorofluoromethane	0.2	<0.2
Freon 113	1,1,2-Trichloro-1,1,2-trifluoroethane	0.2	<0.2
Freon 114	1,2-Dichlorotetrafluoroethane	0.2	<0.2
Hexachlorobutadiene	Hexachloro-1,3-Butadiene	0.2	<0.2

HIGHT SOLLTIONS HERET HAVE TREET

Target Compound	Alt. Name	Verified to	Result	
		ppbv	ppbv	
Dichloromethane	Methylene chloride	0.2	<0.2	
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene	0.4	<0.4	
o-Xylene	1,2-Dimethylbenzene	0.2	<0.2	
Styrene	Vinyl benzene	0.2	<0.2	
Tetrachloroethene	PCE / Perchlorethylene	0.2	<0.2	
Toluene	Methyl Benzene	0.2	<0.2	
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene	0.2	<0.2	
Trichloroethene	TCE / Trichloroethylene	0.2	<0.2	
Vinyl chloride	Chloroethene	0.2	<0.2	
1,2,4-Trichlorobenzene		0.2	<0.2	
1,3-Butadiene	Biethylene	0.2	<0.2	
1,4-Dioxane	p-Dioxane	0.2	<0.2	
2,2,4-Trimethylpentane	Isooctane	0.2	<0.2	
4-Ethyltoluene	p-Ethyltoluene	0.2	<0.2	
Acetone	2-Propanone	0.2	<0.2	
Allyl chloride	3-Chloropropene	0.2	<0.2	
Bromodichloromethane	Dichlorobromomethane	0,2	<0.2	
Bromoform	Tribromomethane	0.2	<0.2	
Carbon disulfide	CS2	0.2	<0.2	
Cyclohexane		0.2	<0.2	
Dibromochloromethane	Chlorodibromoethane	0.2	<0.2	
Ethyl acetate	Acetic ester	0.2	<0.2	
Isopropyl alcohol	Isopropanol / 2-Propanol	0.2	<0.2	
Methyl butyl ketone	MBK / 2-Hexanone	0.2	<0.2	
Methyl ethyl ketone	MEK / 2-Butanone	0.2	<0.2	
Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone	0.2	<0.2	
Methyl tert-butyl ether	MTBE	0.2	<0.2	
n-Heptane	WITEL	0.2	<0.2	
n-Hexane		0.2	<0.2	
Propene	Propylene	0.2	<0.2	
Tetrahydrofuran	THE	0.2	<0.2	
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene	0.2	<0.2	
Vinyl acetate	•	0.2		
Bromoethene	Acetic acid vinyl ester		<0.2	
	Vinyl bromide	0.2	<0.2	
Benzyl chloride	a-Chlorotoluene	0.2	<0.2	
Ethanol	Ethyl alcohol	0.2	<0.2	
Acetonitrile	Methyl cyanide	0.2	<0.2	
Acrolein	2-Propenal	0.2	<0.2	
Acrylonitrile	2-Propenenitrile	0.2	<0.2	
tert-Butyl alcohol	TBA	0.2	<0.2	
2-Chloroprene	2-Chloro-1,3-butadiene	0.2	<0.2	
Diisopropyl Ether	DIPE	0.2	<0.2	
Ethyl tert-butyl ether	ETBE	0.2	<0.2	
tert-Amyl methyl ether	TAME	0.2	<0.2	
Methyl methacrylate	MMA	0.2	<0.2	
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride	0.2	<0.2	
Isopropylbenzene	Cumene	0.2	<0.2	
2-Chlorotoluene	o-Chlorotoluene	0.2	<0.2	
n-Propylbenzene	Phenyl propane	0.2	<0.2	
tert-Butylbenzene	1,1-Dimethylethylbenzene	0.2	<0.2	
sec-Butylbenzene	1-Methylpropylbenzene	0.2	< 0.2	
2-Isopropyltoluene	o-Cymene	0.2	<0.2	
n-Butylbenzene	Phenyl butane	0.2	<0.2	
Naphthalene		0.2	<0.2	

CERTIFICATE OF ANALYSIS

Work Order : EN1803911 Page : 1 of 4

Amendment : 1

Client Laboratory **ECOTECH PTY LTD** : Environmental Division Newcastle

Contact : MS LARA NICHOLAS Contact : Hayley Withers

Address Address : 5/585 Maitland Road Mayfield West NSW Australia 2304 : 1492 FERNTREE GULLY ROAD

KNOXFIELD VICTORIA. AUSTRALIA 3180

Telephone : +61 03 9730 7800 **Project** : WD4 PRIMULA AVE **Date Samples Received** : 29-Jun-2018 09:40

Order number : 235939 C-O-C number

Sampler : DANIEL RAYMOND

Site

Quote number : NE/070/17

No. of samples received : 2 No. of samples analysed : 2 Telephone : +612 4014 2500

Date Analysis Commenced : 04-Jul-2018

Issue Date · 11-Jul-2018 10:45

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Daniel Junek Senior Air Analyst Newcastle - Organics, Mayfield West, NSW

Daniel Junek Senior Air Analyst Newcastle, Mayfield West, NSW Page : 2 of 4

 Work Order
 : EN1803911 Amendment 1

 Client
 : ECOTECH PTY LTD

 Project
 : WD4 PRIMULA AVE

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Amendment (11/07/2018): This report has been amended to alter the sample dates. All analysis results are as per the previous report.
- EP101: Results reported in μg/m³ are calculated from PPBV results based on a temperature of 25°C and atmospheric pressure of 101.3 kPa.
- CAN-001: Results for Pressure As Received are measured under controlled conditions using calibrated laboratory gauges. These results are expressed as an Absolute Pressure. Equivalent gauge pressures may be calculated by subtracting the Pressure Laboratory Atmosphere taken at the time of measurement.
- CAN-001: Results for Pressure Gauge as Received are obtained from uncalibrated field gauges and are indicative only. These results may not precisely match calibrated gauge readings and may vary from field measurements due to changes in temperature and pressure

Page

3 of 4 EN1803911 Amendment 1 Work Order : ECOTECH PTY LTD Client Project WD4 PRIMULA AVE

Analytical Results

Sub-Matrix: AIR (Matrix: AIR)	Client sample ID		140618 C4989_S1833	200618 C12646_S2825	 		
	Cli	ient sampli	ng date / time	14-Jun-2018 23:30	20-Jun-2018 23:30	 	
Compound	CAS Number	LOR	Unit	EN1803911-001	EN1803911-002	 	
				Result	Result	 	
EP101: VOCs by USEPA Method TO	15 (Calculated Conce	entration)					
Benzene	71-43-2	1.6	μg/m³	<1.6	<1.6	 	
Toluene	108-88-3	1.9	µg/m³	2.2	10.2	 	
Ethylbenzene	100-41-4	2.2	μg/m³	<2.2	<2.2	 	
meta- & para-Xylene	108-38-3 106-42-3	4.3	μg/m³	<4.3	4.3	 	
ortho-Xylene	95-47-6	2.2	μg/m³	<2.2	<2.2	 	
Naphthalene	91-20-3	2.6	μg/m³	<2.6	<2.6	 	
Total Xylenes		6.6	μg/m³	<6.6	<6.6	 	
EP101: VOCs by USEPA Method TO	15r						
Benzene	71-43-2	0.5	ppbv	<0.5	<0.5	 	
Toluene	108-88-3	0.5	ppbv	0.6	2.7	 	
Ethylbenzene	100-41-4	0.5	ppbv	<0.5	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	1.0	ppbv	<1.0	1.0	 	
ortho-Xylene	95-47-6	0.5	ppbv	<0.5	<0.5	 	
Naphthalene	91-20-3	0.5	ppbv	<0.5	<0.5	 	
Total Xylenes		1.5	ppbv	<1.5	<1.5	 	
Sampling Quality Assurance							
Pressure - As received	PRESSURE	0.1	kPaa	77.2	106	 	
Pressure - Gauge as Received		1	Inches Hg	-12	-3	 	
Pressure - Laboratory Atmosphere		0.1	kPaa	102	102	 	
Temperature as Received		0.1	°C	21.0	21.0	 	
USEPA Air Toxics Method TO15r Su	rrogates						
4-Bromofluorobenzene	460-00-4	0.5	%	93.8	93.6	 	

Page

: 4 of 4 : EN1803911 Amendment 1 Work Order Client : ECOTECH PTY LTD WD4 PRIMULA AVE Project

Surrogate Control Limits

Sub-Matrix: AIR	Recovery Limits (%)			
Compound	CAS Number	Low	High	
USEPA Air Toxics Method TO15r Surrogates				
4-Bromofluorobenzene	460-00-4	60	140	

QUALITY CONTROL REPORT

· 11-Jul-2018

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Work Order : **EN1803911** Page : 1 of 3

Amendment : 1

Client : ECOTECH PTY LTD Laboratory : Environmental Division Newcastle

Contact : MS LARA NICHOLAS Contact : Hayley Withers

Address : 1492 FERNTREE GULLY ROAD Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

KNOXFIELD VICTORIA, AUSTRALIA 3180

 Telephone
 : +61 03 9730 7800
 Telephone
 : +612 4014 2500

 Project
 : WD4 PRIMULA AVE
 Date Samples Received
 : 29-Jun-2018

Order number : 235939 Date Analysis Commenced : 04-Jul-2018

C-O-C number : ---- Issue Date

Sampler : DANIEL RAYMOND

: 2

This Quality Control Report contains the following information:

Site : ----

No. of samples received

Quote number : NE/070/17

No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Daniel Junek Senior Air Analyst Newcastle - Organics, Mayfield West, NSW

Daniel Junek Senior Air Analyst Newcastle, Mayfield West, NSW

Page : 2 of 3

Work Order : EN1803911 Amendment 1
Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: AIR	Sub-Matrix: AIR				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR Unit Original Result Duplicate Result RPD (%)				RPD (%)	Recovery Limits (%)		
EP101: VOCs by USEPA Method TO15r (QC Lot: 1778613)											
EN1803973-001	Anonymous	EP101-H: Benzene	71-43-2	0.5	ppbv	2.4	2.4	0.00	No Limit		
		EP101-H: Toluene	108-88-3	0.5	ppbv	8.0	7.9	0.00	0% - 50%		
		EP101-H: Ethylbenzene	100-41-4	0.5	ppbv	0.8	0.8	0.00	No Limit		
		EP101-H: ortho-Xylene	95-47-6	0.5	ppbv	0.8	0.8	0.00	No Limit		
		EP101-H: meta- & para-Xylene	108-38-3	1	ppbv	2.3	2.3	0.00	No Limit		
			106-42-3								

Page : 3 of 3

Work Order : EN1803911 Amendment 1
Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control terms Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (DCS) refers to certified reference materials, or known interference free matrices spiked with target analytes. The purpose of these QC parameters are to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS and DCS.

Sub-Matrix: AIR		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike Spike Recovery		very (%) Recover		Limits (%)	RPDs (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EP101: VOCs by USEPA Method TO15r (QCLot: 1778613)												
EP101-H: Benzene	71-43-2	0.5	ppbv	<0.5	100 ppbv	99.7	98.3	77	114	25	25	
EP101-H: Toluene	108-88-3	0.5	ppbv	<0.5	100 ppbv	104	103	78	115	25	25	
EP101-H: Ethylbenzene	100-41-4	0.5	ppbv	<0.5	100 ppbv	98.8	97.5	82	121	25	25	
EP101-H: meta- & para-Xylene	108-38-3	1	ppbv	<1.0	200 ppbv	95.8	94.2	82	122	25	25	
	106-42-3											
EP101-H: ortho-Xylene	95-47-6	0.5	ppbv	<0.5	100 ppbv	97.4	95.8	83	122	25	25	

[•] No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EN1803911** Page : 1 of 4

Amendment : 1

Client : ECOTECH PTY LTD Laboratory : Environmental Division Newcastle

Contact: MS LARA NICHOLASTelephone: +612 4014 2500Project: WD4 PRIMULA AVEDate Samples Received: 29-Jun-2018Site: ---Issue Date: 11-Jul-2018

Sampler : DANIEL RAYMOND : 2
Order number : 235939 : No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4

Work Order : EN1803911 Amendment 1
Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: AIR

Evaluation: * = Holding time breach: \checkmark = Within holding time.

Method	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP101: VOCs by USEPA Method TO15r							
Summa style Canister - ALS Supplied Silonite (EP101-H) 140618 - C4989_S1833	14-Jun-2018				05-Jul-2018	14-Jul-2018	✓
Summa style Canister - ALS Supplied Silonite (EP101-H) 200618 - C12646_S2825	20-Jun-2018				05-Jul-2018	20-Jul-2018	✓
Sampling Quality Assurance							
Summa style Canister - ALS Supplied Silonite (CAN-001) 140618 - C4989_S1833	14-Jun-2018				04-Jul-2018	14-Jun-2019	✓
Summa style Canister - ALS Supplied Silonite (CAN-001) 200618 - C12646_S2825	20-Jun-2018				04-Jul-2018	20-Jun-2019	✓

Page : 3 of 4

Work Order EN1803911 Amendment 1 Client ECOTECH PTY LTD WD4 PRIMULA AVE Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: AIR			Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.							
Quality Control Sample Type		С	ount	Rate (%)			Quality Control Specification			
Analytical Methods	Method	OC Regular		Actual Expected		Evaluation	1			
Duplicate Control Samples (DCS)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Laboratory Duplicates (DUP)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Laboratory Control Samples (LCS)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Method Blanks (MB)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard			

Page : 4 of 4

Work Order : EN1803911 Amendment 1
Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Canister Sampling - Field Data	CAN-001	AIR	In house: Referenced to USEPA TO14 / TO15
Hydrocarbons in Air by USEPA TO15	EP101-H	AIR	In house: Referenced to USEPA TO15r Volatile Organic Compounds in Air by USEPA TO15. Aliphatic and Aromatic Hydrocarbons
Hydrocarbons in Air by USEPA TO15 (mass/volume)	EP101-H-MV	AIR	In house: Referenced to USEPA TO15r Hydrocarbons in Air by USEPA TO15 (Calculated Concentration)

AIR CANISTER CHAIN OF CUSTODY

CHARLES OF Burris Road Poores DA 5000 Po. 18 2352 2830 b. sometre Barston com

DERISE 45 DEPH STEEL STATIONS SELVINGS STATEMENT If sourced from an ALS Laboratory: please tick →

© 0.1 (2011-1201 - Automatic Autom DMACKA) 70 Hartest Road Statesy Diff (7v) Ph. 57 4842 8107 6 merckay (passionersteen

DMELSONARE IN The star Relate Sprendicase (VKI 397) Ph. 638546 9600 E. Bandosa photographe (Bangupas Com-ton-

DMLOGER 1.23 Dyoney Read Mudawa NSV) 2254 Ph: 026372 9775 D Tryagea mangalagoba no m

SHENDARTLE FIRS GENERA FROM May See year 55 to 2014. Didinale est being fisch sina nowinasia 256: 20 11 442: 1067 f. nombellinesponalism

DESCTO CONCOUNT MATER WA 1001 Fo Of 1311 TOST S. CARROS DESCRIBING CONT

2/31/186 - 273-365 Floridark Road Finished; H3N 2164 Ar G2 5164 8515 E. Kanalys System Rivingson (am 4 CONTROLLS 14-15 Obsess Court Bone INC 4/16 Bt 67 4/765 0650 S. townerse someomerself in special com-

times, endenke de kaney three indungung hits 1900-th PS 4229 Itols El watergong belanded com

	Active to the second selection in E.Y. N. N/A NE.Y. N. N/A RECORD STATES AND SECOND
ROJECT: WD4 PRIMULA AVE ALS QUOTE NO.: NE/070/17 COC SEQUENCE NUMBER (Circle) COC SEQUENCE NU	NE Y/N NA NEGOT YES NO GRATURE 1C Syndum and delation Syndum and delation
ROJECT: WD4 PRIMULA AVE ALS QUOTE NO.: NE/070/17 COC SEQUENCE NUMBER (Circle) COC SEQUENCE NU	opged Yes No. erature 1C DUISHED BY: Syndure and datalant Syndure and datalant
ROJECT MANAGER: Lara Nicholas CONTACT PH: 03 9370 7845 0417351053 OF: 1 2 3 4 5 6 7 Office continents AMPLER: Daniel Raymond SAMPLER MOBILE: 0419424932 RELINQUISHED BY: Mail Reports to (will default to PM if no other addresses are listed): lara.nicholas@ecotech.com, daniel.raymond@ecotech.com RECEIVED BY: RECEIVED	Grature 1C Syndure and deleting FED BY: Syndure and deleting
AMPLER: Daniel Raymond SAMPLER MOBILE: 0419424932 RELINQUISHED BY: RELINQUISHED BY: RELINQUISHED BY: RECEIVED	PED BY: Synothers and date-form Synothers and date-form
OC Emailed to ALS? (YES / NO) EDD FORMAT (or default): mail Reports to (will default to PM if no other addresses are listed): lara.nicholas@ecotech.com, daniel.raymond@ecotech.com RECEIVED BY: WIDNES 2916/JB and dataform RECEIVED BY: WIDNES 2916/JB and dataform RECEIVED BY: RECEIVED BY:	Signature and datedim 'ED BY; Signature and datedom
mail Reports to (will default to PM if no other addresses are listed): lara.nicholas@ecotech.com, daniel.raymond@ecotech.com RECEIVED BY: ###################################	Signitture and datatim
Mail Invoice to (will default to PM if no other addresses are listed): naomi.dans@ecotech.com WONUS 2916//Space and disastors OMMENTS/SPECIAL HANDLING/REPLACEMENT OR RETURN INSTRUCTIONS: GAS SAMPLE CONTAINER INFORMATION Canister Gauge Pressures (PSI) REPUBBER	Signithure and datakim
OMMENTS/SPECIAL HANDLING/REPLACEMENT OR RETURN INSTRUCTIONS: GAS SAMPLE CONTAINER INFORMATION Canister Gauge Pressures (PSI) Refer to Canister Verification Reports and COAs for pressures measured by the Lab ANALYSES REQUESTED Additional I	Syntus and distribution
GAS SAMPLE CONTAINER INFORMATION Canister Gauge Pressures (PSI) Canister Gauge Pressures (PSI) Refer to Canister Verification Reports and COAs for pressure measured by the Lab ANALYSES REQUESTED Additional I	nformation
GAS SAMPLE CONTAINER INFORMATION Pressures (PSI) COAs for pressured by the Lab ANALYSES REQUESTED Additional I	nformation
CANISTER / SAMPLE DETAILS Reporting Requirements Suite Codes must be listed to attract suite price	
CANISTER SERIAL NO. CANISTER SERIAL NO. CANISTER SERIAL NO. CONTROLLER SERIAL NO. CANISTER SERIAL NO. COMMENTAL (seg Air, Soll Gas) CANISTER SERIAL NO. CANISTER SERIAL NO. CANISTER SERIAL NO. COMMENTAL MATRIX (seg Air, Soll Gas) COMMENTAL MATRIX (seg Air, Soll Gas) Comments on LORs Arribert Soll Gas Other / pepty, permy, old permy indignal of the colline of the colli	nant levels, or samples nalvsis etc. (LOR defaults to
SERIAL NO. 4989 1833 140618 14/06/18 00:30 - AIR 32 3 X X X X X X X X X X X X X X X X X	re and ondrony
2 12646 2825 200618 20/06/18 00:30 - AIR 33 4 X X X	
Environmental Division	
Newcastle	
Work Order Reference	
EN1803911	
#####################################	
1990 100 100 100 100 100 100 100 100 100	
ob Specific Instructions: Ecotech Timers Sent with samples to be cleaned with nitrogen and returned with new canisters	

Campater Viahinestilane Regionie 😁 🗀

Canister No:

4989

USEPA TO15 (Extended Suite) **Specified Purpose:**

Ambient Air

<0.01 psia

Verification Date: 23-May-2018 Valid To (At least): 20-Jun-2018

Verification File: 180523_07.D

13-Jun-2017

Canister Type: Entech Silonite - Summa Style

Canister Size: Valve Type: Nupro

Dispatch Pressure:

Last Stability Check: Next Check Scheduled:

13-Jun-2019 Analyst: K. Gelderman

Approved for Dispatch by:

24

Camister Verification Protocol Calistas da viriad tictor sussemble the taquistas analysis and cambiers are certied caus according to the regularization of 1000, method 100

st virification (medius a checulio containmalion, leaks and damage to valeus, stability checks are parformed after are or it damage to the captater it exapected, then exemples depressibling the designated holding time to ensure ex Historia capable of holding the target over cals without significant degradation.

		Verification			
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result	
			ppbv	pp bv	
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform		0.2	<0.2	
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride		0.2	<0.2	
1,1,2-Trichloroethane	Vinyl trichloride		0.2	<0.2	
1,1-Dichloroethane	Ethylidene chloride		0.2	<0.2	
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride		0.2	<0.2	
1,2-Dichloroethane	Ethylene chloride		0.2	<0.2	
1,2,4-Trimethylbenzene	Pseudocumene		0.2	<0.2	
1,2-Dibromoethane	EDB / Ethylene dibromide		0.2	<0.2	
1,2-Dichlorobenzene	o-Dichlorobenzene		0.2	<0.2	
1,2-Dichloropropane	Propylene dichloride		0.2	<0.2	
1,3,5-Trimethylbenzene	Mesitylene		0.2	<0.2	
1,3-Dichlorobenzene	m-Dichlorobenzene		0.2	<0.2	
1,4-Dichlorobenzene	p-Dichlorobenzene		0.2	<0.2	
Benzene	Cyclohexatriene		0.2	<0.2	
Bromomethane	Methyl bromide		0.2	<0.2	
Tetrachloromethane	Carbon tetrachloride		0.2	<0.2	
Chlorobenzene	Phenyl chloride		0.2	<0.2	
Chloroethane	Ethyl chloride		0.2	<0.2	
Chloroform	Trichloromethane		0.2	<0.2	
Chloromethane	Methyl chloride		0.2	<0.2	
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene		0.2	<0.2	
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene		0.2	<0.2	
Ethylbenzene	Phenyl ethane		0.2	<0.2	
Freon 12	Dichlorodifluoromethane		0.2	<0.2	
eon 11	Trichlorofluoromethane		0.2	<0.2	
∽-reon 113	1,1,2-Trichloro-1,2,2-trifluoroethane		0.2	<0.2	
Freon 114	1,2-Dichlorotetrafluoroethane		0.2	<0.2	
Hexachlorobutadiene	Hexachloro-1,3-Butadiene		0.2	<0.2	

				j j
			Verification	
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result
P. I.			bbpA	ppbv
Dichloromethane	Methylene chloride		0.2	<0.2
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene		0.4	<0.4
o-Xylene	1,2-Dimethylbenzene		0.2	<0.2
Styrene Tetrachloroethene	Vinyl benzene		0.2	<0.2
Toluene	PCE / Perchlorethylene		0.2	<0.2
trans-1,3-Dichloropropene	Methyl Benzene		0.2	<0.2
Trichloroethene	trans-1,3-Dichloropropylene TCE / Trichloroethylene		0.2 0.2	<0.2 <0.2
Vinyl chloride	Chloroethene		0.2	<0.2 <0.2
1,2,4-Trichlorobenzene	Silioroctricine		0.2	<0.2
1,3-Butadiene	Biethylene		0.2	<0.2
1,4-Dioxane	p-Dioxane		0.2	<0.2
2,2,4-Trimethylpentane	Isooctane		0.2	<0.2
4-Ethyltoluene	p-Ethyltoluene		0.2	<0.2
Acetone	2-Propanone		0.2	<0.2
Allyl chloride	3-Chloropropene		0.2	<0.2
Bromodichloromethane	Dichlorobromomethane		0.2	<0.2
Bromoform	Tribromomethane		0.2	< 0.2
Carbon disulfide	CS2		0.2	< 0.2
Cyclohexane			0.2	< 0.2
Dibromochloromethane	Chlorodibromoethane		0.2	<0.2
Ethyl acetate	Acetic ester		0.2	<0.2
Isopropyl alcohol	Isopropanol / 2-Propanol		0.2	<0.2
Methyl butyl ketone	MBK / 2-Hexanone		0.2	<0.2
Methyl ethyl ketone	MEK / 2-Butanone		0.2	< 0.2
Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone		0.2	<0.2
Methyl tert-butyl ether	MTBE		0.2	<0.2
n-Heptane			0.2	<0.2
n-Hexane			0.2	<0.2
Propene	Propylene		0.2	<0.2
Tetrahydrofuran	THF		0.2	<0.2
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene		0.2	<0.2
Vinyl acetate	Acetic acid vinyl ester		0.2	<0.2
Bromoethene	Vinyl bromide		0.2	<0.2
Benzyl chloride	a-Chlorotoluene		0.2	<0.2
Ethanol	Ethyl alcohol		0.2	<0.2
Acetonitrile	Methyl cyanide		0.2	<0.2
Acrolein Acrylonitrile	2-Propenal		0.2	<0.2
tert-Butyl alcohol	2-Propenenitrile TBA		0.2 0.2	<0.2 <0.2
2-Chloroprene	2-Chloro-1,3-butadiene		0.2	<0.2 <0.2
Diisopropyl Ether	DIPE		0.2	<0.2
Ethyl tert-butyl ether	ETBE		0.2	<0.2
tert-Amyl methyl ether	TAME		0.2	<0.2
Methyl methacrylate	MMA		0.2	<0.2
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride		0.2	<0.2
Isopropylbenzene	Cumene		0.2	<0.2
2-Chlorotoluene	o-Chlorotoluene		0.2	<0.2
n-Propylbenzene	Phenyl propane		0.2	<0.2
tert-Butylbenzene	1,1-Dimethylethylbenzene		0.2	<0.2
sec-Butylbenzene	1-Methylpropylbenzene		0.2	<0.2
2-Isopropyltoluene	o-Cymene		0.2	<0.2
n-Butylbenzene	Phenyl butane		0.2	<0.2
Naphthalene	•		0.2	<0.2

a colo está la coló la coló está la coló está

Sampler No:

1833

Specified Purpose:

USEPA TO15 (Extended Suite)

LORs Required: Sampler Type:

Ambient Air

Passive Sampler

Verification Date:

28-Mar-2018 25-Apr-2018

Valid To (At least): Verification File: 180328 14.D

Flow Rate Calibrated at:

ml/min

Analyst:

K. Gelderman

Calibrated by:

29/3/18

Approved for Dispatch by:

Each out it catabriants auss a chack for contamination, lease and damage in his ings

Target Compound	Alt. Name	Verified to	Result
		ppbv	ppbv
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform	0.2	<0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride	0.2	<0.2
1,1,2-Trichloroethane	Vinyl trichloride	0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride	0.2	<0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride	0.2	<0.2
1,2-Dichloroethane	Ethylene chloride	0.2	<0.2
1,2,4-Trimethylbenzene	Pseudocumene	0.2	< 0.2
1,2-Dibromoethane	EDB / Ethylene dibromide	0.2	<0.2
1,2-Dichlorobenzene	o-Dichlorobenzene	0.2	<0.2
1,2-Dichloropropane	Propylene dichloride	0.2	<0.2
1,3,5-Trimethylbenzene	Mesitylene	0.2	<0.2
1,3-Dichlorobenzene	m-Dichlorobenzene	0.2	<0.2
1,4-Dichlorobenzene	p-Dichlorobenzene	0.2	<0.2
Benzene	Cyclohexatriene	0.2	<0.2
Bromomethane	Methyl bromide	0.2	<0.2
Tetrachloromethane	Carbon tetrachloride	0.2	<0.2
Chlorobenzene	Phenyl chloride	0.2	<0.2
Chloroethane	Ethyl chloride	0.2	<0.2
Chloroform	Trichloromethane	0.2	<0.2
Chloromethane	Methyl chloride	0.2	<0.2
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene	0.2	<0.2
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene	0.2	<0.2
~thylbenzene	Phenyl ethane	0.2	<0.2
eon 12	Dichlorodifluoromethane	0.2	<0.2
Freon 11	Trichlorofluoromethane	0.2	<0.2
Freon 113	1,1,2-Trichloro-1,1,2-trifluoroethane	0.2	<0.2
Freon 114	1,2-Dichlorotetrafluoroethane	0.2	<0.2
Hexachlorobutadiene	Hexachloro-1,3-Butadiene	0.2	<0.2

FIGHT SOLLTIONS WORTH MARKET

Target Compound	Alt. Name	Verified to	Result	
		ppbv	ppbv	
Dichloromethane	Methylene chloride	0.2	<0.2	
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene	0.4	<0.4	
o-Xylene	1,2-Dimethylbenzene	0.2	<0.2	
Styrene	Vinyl benzene	0.2	<0.2	
Tetrachloroethene	PCE / Perchlorethylene	0.2	<0.2	
Toluene	Methyl Benzene	0.2	<0.2	
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene	0.2	<0.2	
Trichloroethene	TCE / Trichloroethylene	0.2	<0.2	
Vinyl chloride	Chloroethene	0.2	<0.2	
1,2,4-Trichlorobenzene		0.2	<0.2	
1,3-Butadiene	Biethylene	0.2	<0.2	
1,4-Dioxane	p-Dioxane	0.2	<0.2	
2,2,4-Trimethylpentane	Isooctane	0.2	<0.2	
4-Ethyltoluene	p-Ethyltoluene	0.2	<0.2	
Acetone	2-Propanone	0.2	<0.2	
Allyl chloride	3-Chloropropene	0.2	<0.2	
Bromodichloromethane	Dichlorobromomethane	0.2	<0.2	
Bromoform	Tribromomethane	0.2	<0.2	
Carbon disulfide	CS2	0.2	<0.2	
Cyclohexane		0.2	<0.2	
Dibromochloromethane	Chlorodibromoethane	0.2	<0.2	
Ethyl acetate	Acetic ester	0.2	< 0.2	
Isopropyl alcohol	Isopropanol / 2-Propanol	0.2	<0.2	
Methyl butyl ketone	MBK / 2-Hexanone	0.2	<0.2	
Methyl ethyl ketone	MEK / 2-Butanone	0.2	<0.2	
Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone	0.2	<0.2	
Methyl tert-butyl ether	MTBE	0.2	<0.2	
n-Heptane		0.2	<0.2	
n-Hexane		0.2	<0.2	
Propene	Propylene	0.2	<0.2	
Tetrahydrofuran	THF	0.2	<0.2	
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene	0.2	<0.2	
Vinyl acetate	Acetic acid vinyl ester	0.2	<0.2	
Bromoethene	Vinyl bromide	0.2	<0.2	
Benzyl chloride	a-Chlorotoluene	0.2	<0.2	
Ethanol	Ethyl alcohol	0.2	<0.2	
Acetonitrile	Methyl cyanide	0.2	<0.2	
Acrolein	2-Propenal	0.2	<0.2	
Acrylonitrile	2-Propenenitrile	0.2	<0.2	
tert-Butyl alcohol	TBA	0.2	<0.2	
2-Chloroprene	2-Chloro-1,3-butadiene	0.2	<0.2	
Diisopropyl Ether	DIPE	0.2	<0.2	
Ethyl tert-butyl ether	ETBE	0.2	<0.2	
tert-Amyl methyl ether	TAME	0.2	<0.2	
Methyl methacrylate	MMA	0.2	<0.2	
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride	0.2	<0.2	
Isopropylbenzene	Cumene	0.2	<0.2	
2-Chlorotoluene	o-Chlorotoluene	0.2	<0.2	
n-Propylbenzene	Phenyl propane	0.2	<0.2	
	• • • •	0.2	<0.2	
tert-Butylbenzene sec-Butylbenzene	1,1-Dimethylethylbenzene	0.2	<0.2	
-	1-Methylpropylbenzene		<0.2	
2-Isopropyltoluene	, o-Cymene	0.2		
n-Butylbenzene	Phenyl butane	0.2	<0.2	
Naphthalene		0.2	<0.2	

General menine di della di Celena

Canister No:

12646

Specified Purpose:

USEPA TO15 (Extended Suite)

Ambient Air

Verification Date: Valid To (At least): Verification File:

08-Jun-2018 06-Jul-2018

180605_09.D

Canister Type: Canister Size:

Dispatch Pressure:

Yahre Type:

Entech Silonite - Summa Style

TOY

ethart pala

Last Stability Check: Next Check Scheduled: 19-Dec-2017 19-Dec-2019

Arahat:

Accordant for Cispatch by:

K. Gehámenan

Canister Verification Protocol

Lacrasia versed from turborist protections adjace and applications of enough cardalens are ventard dos mackonomo to the naguraments of District metrics (1914

tars verbragge involved a thesa is contonination lights and damaga to values. Stability stacks are partismes after vests or 2 damaga to the callisar in second coll, then every two verby, and in the designated holoing time more me or cantilisa is capable of houling the range or empals without significant descatation.

A.		Verification		
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result
			ppbv	ppbv
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform		0.2	<0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride		0.2	<0.2
1,1,2-Trichloroethane	Vinyl trichloride		0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride		0.2	<0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride		0.2	<0.2
1,2-Dichloroethane	Ethylene chloride		0.2	<0.2
1,2,4-Trimethylbenzene	Pseudocumene		0.2	<0.2
1,2-Dibromoethane	EDB / Ethylene dibromide		0.2	<0.2
1,2-Dichlorobenzene	o-Dichlorobenzene		0.2	<0.2
1,2-Dichloropropane	Propylene dichloride		0.2	<0,2
1,3,5-Trimethylbenzene	Mesitylene		0.2	<0.2
1,3-Dichlorobenzene	m-Dichlorobenzene		0.2	< 0.2
1,4-Dichlorobenzene	p-Dichlorobenzene		0.2	<0.2
Benzene	Cyclohexatriene		0.2	<0.2
Bromomethane	Methyl bromide		0.2	<0,2
Tetrachloromethane	Carbon tetrachloride		0.2	<0.2
Chlorobenzene	Phenyl chloride		0.2	<0.2
Chloroethane	Ethyl chloride		0.2	<0.2
Chloroform	Trichloromethane		0.2	<0.2
Chloromethane	Methyl chloride		0.2	<0.2
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene		0.2	<0.2
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene		0.2	<0.2
Ethylbenzene	Phenyl ethane		0.2	<0.2
Freon 12	Dichlorodifluoromethane		0.2	<0.2
° on 11	Trichlorofluoromethane		0.2	<0.2
~ m . ∋n 113	1,1,2-Trichloro-1,2,2-trifluoroethane		0.2	<0.2
Freon 114	1,2-Dichlorotetrafluoroethane		0.2	<0.2
Hexachlorobutadiene	Hexachloro-1,3-Butadiene		0.2	<0.2

		7		
			Verification	
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result
			ppbv	ppbv
Dichloromethane	Methylene chloride		0.2	<0.2
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene		0.4	<0.4
o-Xylene	1,2-Dimethylbenzene		0.2	<0.2
Styrene	Vinyl benzene		0.2	<0.2
Tetrachloroethene	PCE / Perchlorethylene		0.2	<0.2
Toluene	Methyl Benzene		0.2	<0.2
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene		0.2	<0.2
Trichloroethene	TCE / Trichloroethylene		0.2	<0.2
Vinyl chloride	Chloroethene		0.2	<0.2
1,2,4-Trichlorobenzene	-		0.2	<0.2
1,3-Butadiene	Biethylene		0.2	<0.2
1,4-Dioxane	p-Dioxane		0.2	<0.2
2,2,4-Trimethylpentane	Isooctane		0.2	<0.2
4-Ethyltoluene	p-Ethyltoluene		0.2	<0.2
Acetone	2-Propanone		0.2	<0.2
Allyl chloride	3-Chloropropene		0.2	<0.2
Bromodichloromethane	Dichlorobromomethane		0.2	<0.2
Bromoform	Tribromomethane		0.2	<0.2
Carbon disulfide	CS2		0.2	<0.2
Cyclohexane	O. 1. 17 11		0.2	<0.2
Dibromochloromethane	Chlorodibromoethane		0.2	<0.2
Ethyl acetate	Acetic ester		0.2	<0.2
isopropyl alcohol	Isopropanol / 2-Propanol		0.2	<0.2
Methyl butyl ketone	MBK / 2-Hexanone		0.2	<0.2
Methyl ethyl ketone	MEK / 2-Butanone		0.2	<0.2
Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone		0.2	<0.2
Methyl tert-butyl ether	MTBE		0.2	<0.2
n-Heptane			0.2	<0.2
n-Hexane	Paraulas a		0.2	<0.2
Propene	Propylene		0.2	<0.2
Tetrahydrofuran	THF		0.2	<0.2 <0.2
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene		0.2 0.2	<0.2
Vinyl acetate	Acetic acid vinyl ester		0.2	<0.2
Bromoethene	Vinyl bromide		0.2	<0.2
Benzyl chloride	a-Chlorotoluene		0.2	<0.2
Ethanol Acetonitrile	Ethyl alcohol		0.2	<0.2
, 1557-174115	Methyl cyanide			<0.2
Acrolein	2-Propenal		0.2 0.2	<0.2
Acrylonitrile tert-Butyl alcohol	2-Propenenitrile TBA		0.2	<0.2
2-Chloroprene	2-Chloro-1,3-butadiene		0.2	<0.2
· ·	DIPE		0.2	<0.2
Diisopropyl Ether Ethyl tert-butyl ether	ETBE		0.2	<0.2
tert-Amyl methyl ether	TAME		0.2	<0.2
Methyl methacrylate	MMA		0.2	<0.2
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride		0.2	<0.2
Isopropylbenzene	Cumene		0.2	<0.2
2-Chlorotoluene	o-Chlorotoluene		0.2	<0.2
n-Propylbenzene	Phenyl propane		0.2	<0.2
tert-Butylbenzene	1,1-Dimethylethylbenzene		0.2	<0.2
sec-Butylbenzene	1-Methylpropylbenzene		0.2	<0.2
2-Isopropyltoluene	o-Cymene		0.2	<0.2
n-Butylbenzene	Phenyl butane		0.2	<0.2
Naphthalene	i nonyi batano		0.2	<0.2
, apriliation			V.Z	-U.L

2825

Sample Mailleadin Redaktion of

Sampler No:

Specified Purpose:

USEPA TO15 (Extended Suite)

LORs Required: Sampler Type:

Ambient Air

Passive Sampler

Verification Date: Valid To (At least): Verification File:

23-May-2018 20-Jun-2018 180523_05.D

Flow Rate Calibrated at: 3.5 ML/M/nml/min

Analyst:

K. Gelderman

Calibrated by: PF 23/5/18

Approved for Dispatch by:

Sampler Vestfication Protocol Amplementer respectation of the same and application of the same section of

Exercised Cased in a process cheerfor contamination, leaks and domain to fellings

Target Compound	Alt. Name	Verified to	Result
		ppbv	ppbv
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform	0.2	<0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride	0.2	<0.2
1,1,2-Trichloroethane	Vinyl trichloride	0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride	0.2	<0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride	0.2	<0.2
1,2-Dichloroethane	Ethylene chloride	0.2	<0.2
1,2,4-Trimethylbenzene	Pseudocumene	0.2	<0.2
1,2-Dibromoethane	EDB / Ethylene dibromide	0.2	<0.2
1,2-Dichlorobenzene	o-Dichlorobenzene	0.2	<0.2
1,2-Dichloropropane	Propylene dichloride	0.2	<0.2
1,3,5-Trimethylbenzene	Mesitylene	0.2	<0.2
1,3-Dichlorobenzene	m-Dichlorobenzene	0.2	<0.2
1,4-Dichlorobenzene	p-Dichlorobenzene	0.2	<0.2
Benzene	Cyclohexatriene	0.2	<0.2
Bromomethane	Methyl bromide	0.2	<0.2
Tetrachloromethane	Carbon tetrachloride	0.2	<0.2
Chlorobenzene	Phenyl chloride	0.2	<0.2
Chloroethane	Ethyl chloride	0.2	<0.2
Chloroform	Trichloromethane	0.2	<0.2
Chloromethane	Methyl chloride	0.2	<0.2
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene	0.2	<0.2
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene	0.2	<0.2
thylbenzene	Phenyl ethane	0.2	<0.2
reon 12	Dichlorodifluoromethane	0.2	<0.2
Freon 11	Trichlorofluoromethane	0.2	<0.2
Freon 113	1,1,2-Trichloro-1,1,2-trifluoroethane	0.2	<0.2
Freon 114	1,2-Dichlorotetrafluoroethane	0.2	<0.2
Hexachlorobutadiene	Hexachloro-1,3-Butadiene	0.2	<0.2

Target Compound	Alt. Name	Verified to	Result
		ppbv	ppbv
Dichloromethane	Methylene chloride	0.2	<0.2 <0.4
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene	0.4	
o-Xylene	1,2-Dimethylbenzene	0.2 0.2	<0.2 <0.2
Styrene	Vinyl benzene	0.2	<0.2
Tetrachloroethene	PCE / Perchlorethylene	0.2	<0.2
Toluene	Methyl Benzene	0.2	<0.2
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene	0.2	<0.2
Trichloroethene	TCE / Trichloroethylene Chloroethene	0.2	<0.2
Vinyl chloride	Chioloetherie	0.2	<0.2
1,2,4-Trichlorobenzene 1,3-Butadiene	Piothylopo	0.2	<0.2
	Biethylene	0.2	<0.2
1,4-Dioxane	p-Dioxane	0.2	<0.2
2,2,4-Trimethylpentane	Isooctane	0.2	<0.2
4-Ethyltoluene	p-Ethyltoluene	0.2	<0.2
Acetone	2-Propanone		
Allyl chloride	3-Chloropropene	0.2	<0.2
Bromodichloromethane	Dichlorobromomethane	0.2	<0.2
Bromoform	Tribromomethane	0.2	<0.2
Carbon disulfide	CS2	0.2	<0.2
Cyclohexane	011 17 11	0.2	<0.2
Dibromochloromethane	Chlorodibromoethane	0.2	<0.2
Ethyl acetate	Acetic ester	0.2	<0.2
Isopropyl alcohol	Isopropanol / 2-Propanol	0.2	<0.2
Methyl butyl ketone	MBK / 2-Hexanone	0.2	<0.2
Methyl ethyl ketone	MEK / 2-Butanone	0.2	<0.2
Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone	0.2	<0.2
Methyl tert-butyl ether	мтве	0.2	<0.2
n-Heptane		0.2	<0.2
n-Hexane		0.2	<0.2
Propene	Propylene	0.2	<0.2
Tetrahydrofuran	THF	0.2	<0.2
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene	0.2	<0.2
Vinyl acetate	Acetic acid vinyl ester	0.2	<0.2
Bromoethene	Vinyl bromide	0.2	<0.2
Benzyl chloride	o-Chlorotoluene	0.2	<0.2
Ethanol	Ethyl alcohol	0.2	<0.2
Acetonitrile	Methyl cyanide	0.2	<0.2
Acrolein	2-Propenal	0.2	<0.2
Acrylonitrile	2-Propenenitrile	0.2	<0.2
tert-Butyl alcohol	TBA	0.2	<0.2
2-Chloroprene	2-Chloro-1,3-butadiene	0.2	<0.2
Diisopropyl Ether	DIPE	0.2	<0.2
Ethyl tert-butyl ether	ETBE	0.2	<0.2
tert-Amyl methyl ether	TAME	0.2	<0.2
Methyl methacrylate	MMA	0.2	<0.2
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride	0.2	<0.2
Isopropylbenzene	Cumene	0.2	<0.2
2-Chlorotoluene	o-Chlorotoluene	0.2	<0.2
n-Propylbenzene	Phenyl propane	0.2	<0.2
tert-Butylbenzene	1,1-Dimethylethylbenzene	0.2	<0.2
sec-Butylbenzene	1-Methylpropylbenzene	0.2	<0.2
2-Isopropyltoluene	o-Cymene	0.2	<0.2
n-Butylbenzene	Phenyl butane	0.2	<0.2
Naphthalene		0.2	<0.2

CERTIFICATE OF ANALYSIS

Work Order : EN1804332

ECOTECH PTY LTD

Contact : LARA NICHOLAS

Address : 1492 FERNTREE GULLY ROAD

KNOXFIELD VICTORIA, AUSTRALIA 3180

Telephone : +61 03 9730 7800 : WD4 PRIMULA AVE Project

Order number : 235939

C-O-C number

Client

: DANIEL RAYMOND Sampler

Site

Quote number : NE/070/17

No. of samples received : 2 No. of samples analysed : 2 Page : 1 of 4

Laboratory : Environmental Division Newcastle

Contact : Hayley Withers

Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

Telephone : +612 4014 2500 **Date Samples Received** : 12-Jul-2018 10:00

Date Analysis Commenced : 13-Jul-2018

Issue Date : 18-Jul-2018 11:46

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category Dale Semple Newcastle - Organics, Mayfield West, NSW Analyst

Dale Semple Analyst Newcastle, Mayfield West, NSW

Daniel Junek Senior Air Analyst Newcastle - Organics, Mayfield West, NSW Page : 2 of 4
Work Order : EN1804332

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP101: Results reported in μg/m³ are calculated from PPBV results based on a temperature of 25°C and atmospheric pressure of 101.3 kPa.
- CAN-001: Results for Pressure As Received are measured under controlled conditions using calibrated laboratory gauges. These results are expressed as an Absolute Pressure. Equivalent gauge pressures may be calculated by subtracting the Pressure Laboratory Atmosphere taken at the time of measurement.
- CAN-001: Results for Pressure Gauge as Received are obtained from uncalibrated field gauges and are indicative only. These results may not precisely match calibrated gauge readings and may vary from field measurements due to changes in temperature and pressure

Page : 3 of 4
Work Order : EN1804332

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Analytical Results

Sub-Matrix: AIR (Matrix: AIR)	Client sample ID	260618 C4759_S2831	020718 C4973_S1617	 	
Client	sampling date / time	26-Jun-2018 00:00	02-Jul-2018 00:00	 	
Compound CAS Number L	OR Unit	EN1804332-001	EN1804332-002	 	
		Result	Result	 	
EP101: VOCs by USEPA Method TO15 (Calculated Concentration	ation)				
Benzene 71-43-2	1.6 μg/m³	<1.6	<1.6	 	
Toluene 108-88-3	1.9 μg/m³	53.5	10.5	 	
Ethylbenzene 100-41-4 2	2.2 μg/m³	<2.2	<2.2	 	
meta- & para-Xylene 108-38-3 106-42-3	4.3 μg/m³	5.2	<4.3	 	
ortho-Xylene 95-47-6	2.2 μg/m³	<2.2	<2.2	 	
Naphthalene 91-20-3 2	2.6 μg/m³	<2.6	<2.6	 	
Total Xylenes 6	6.6 μg/m³	<6.6	<6.6	 	
EP101: VOCs by USEPA Method TO15r					
Benzene 71-43-2	0.5 ppbv	0.5	<0.5	 	
Toluene 108-88-3	0.5 ppbv	14.2	2.8	 	
Ethylbenzene 100-41-4	0.5 ppbv	<0.5	<0.5	 	
meta- & para-Xylene 108-38-3 106-42-3	1.0 ppbv	1.2	<1.0	 	
ortho-Xylene 95-47-6	0.5 ppbv	<0.5	<0.5	 	
Naphthalene 91-20-3	0.5 ppbv	<0.5	<0.5	 	
Total Xylenes	1.5 ppbv	<1.5	<1.5	 	
Sampling Quality Assurance					
	0.1 kPaa	92.6	103	 	
Pressure - Gauge as Received	1 Inches Hg	-2	0	 	
Pressure - Laboratory Atmosphere (0.1 kPaa	102	102	 	
Temperature as Received (0.1 °C	20.0	20.0	 	
USEPA Air Toxics Method TO15r Surrogates					
	0.5 %	93.1	92.3	 	

Page : 4 of 4
Work Order : EN1804332

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Surrogate Control Limits

Sub-Matrix: AIR		Recovery Limits (%)	
Compound	CAS Number	Low	High
USEPA Air Toxics Method TO15r Surrogates			
4-Bromofluorobenzene	460-00-4	60	140

QUALITY CONTROL REPORT

Page

: 1 of 3

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Work Order : EN1804332

Client : ECOTECH PTY LTD Laboratory : Environmental Division Newcastle

Contact : LARA NICHOLAS Contact : Hayley Withers

Address : 1492 FERNTREE GULLY ROAD Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

KNOXFIELD VICTORIA, AUSTRALIA 3180

 Telephone
 : +61 03 9730 7800
 Telephone
 : +612 4014 2500

 Project
 : WD4 PRIMULA AVE
 Date Samples Received
 : 12-Jul-2018

Order number : 235939 Date Analysis Commenced : 13-Jul-2018

C-O-C number - ---- Issue Date - 18-Jul-2018

Sampler : DANIEL RAYMOND

0 1 1

: 2

Quote number : NE/070/17

No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report; Recovery and Acceptance Limits

Signatories

No. of samples received

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dale Semple	Analyst	Newcastle - Organics, Mayfield West, NSW
Dale Semple	Analyst	Newcastle, Mayfield West, NSW
Daniel Junek	Senior Air Analyst	Newcastle - Organics, Mayfield West, NSW

Page : 2 of 3 Work Order : EN1804332

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: AIR		Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EP101: VOCs by USE	EPA Method TO15r (QC Lot:									
EN1804266-001	Anonymous	EP101-H: Benzene	71-43-2	0.5	ppbv	<0.5	<0.5	0.00	No Limit	
		EP101-H: Toluene	108-88-3	0.5	ppbv	0.7	0.7	0.00	No Limit	
		EP101-H: Ethylbenzene	100-41-4	0.5	ppbv	<0.5	<0.5	0.00	No Limit	
		EP101-H: ortho-Xylene	95-47-6	0.5	ppbv	0.9	0.9	0.00	No Limit	
		EP101-H: meta- & para-Xylene	108-38-3	1	ppbv	2.2	2.2	0.00	No Limit	
			106-42-3							

Page : 3 of 3 Work Order : EN1804332

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control terms Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (DCS) refers to certified reference materials, or known interference free matrices spiked with target analytes. The purpose of these QC parameters are to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS and DCS.

Sub-Matrix: AIR		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPD	Os (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EP101: VOCs by USEPA Method TO15r	(QCLot: 1802938)											
EP101-H: Benzene	71-43-2	0.5	ppbv	<0.5	100 ppbv	94.4	94.2	77	114	25	25	
EP101-H: Toluene	108-88-3	0.5	ppbv	<0.5	100 ppbv	97.4	96.8	78	115	25	25	
EP101-H: Ethylbenzene	100-41-4	0.5	ppbv	<0.5	100 ppbv	92.4	92.0	82	121	25	25	
EP101-H: meta- & para-Xylene	108-38-3	1	ppbv	<1.0	200 ppbv	90.4	89.6	82	122	25	25	
	106-42-3											
EP101-H: ortho-Xylene	95-47-6	0.5	ppbv	<0.5	100 ppbv	91.9	91.3	83	122	25	25	

[•] No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EN1804332** Page : 1 of 4

Client : ECOTECH PTY LTD Laboratory : Environmental Division Newcastle

 Contact
 : LARA NICHOLAS
 Telephone
 : +612 4014 2500

 Project
 : WD4 PRIMULA AVE
 Date Samples Received
 : 12-Jul-2018

 Site
 : --- Issue Date
 : 18-Jul-2018

Sampler : DANIEL RAYMOND No. of samples received : 2
Order number : 235939 No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4 Work Order : EN1804332

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: AIR

Evaluation: **x** = Holding time breach : ✓ = Within holding time.

WICH PAIR				Lvalaation	. Holding time	broadin, Trian	ii nolaling tilin
Method	Sample Date	Ex	traction / Preparation				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP101: VOCs by USEPA Method TO15r							
Summa style Canister - ALS Supplied Silonite (EP101-H) 020718 - C4973_S1617	02-Jul-2018				16-Jul-2018	01-Aug-2018	✓
Summa style Canister - ALS Supplied Silonite (EP101-H) 260618 - C4759_S2831	26-Jun-2018				16-Jul-2018	26-Jul-2018	✓
Sampling Quality Assurance							
Summa style Canister - ALS Supplied Silonite (CAN-001) 020718 - C4973_S1617	02-Jul-2018				13-Jul-2018	02-Jul-2019	✓
Summa style Canister - ALS Supplied Silonite (CAN-001) 260618 - C4759 S2831	26-Jun-2018				13-Jul-2018	26-Jun-2019	√

Page : 3 of 4 Work Order EN1804332

Client ECOTECH PTY LTD WD4 PRIMULA AVE Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: AIR		Evaluation: x = Quality Control frequency not within specification; √ = Quality Control frequency within specification.								
Quality Control Sample Type		Co	ount	Rate (%) Quality Control Specification						
Analytical Methods	Method	ОС	Reaular	Actual	Expected	Evaluation				
Duplicate Control Samples (DCS)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Laboratory Duplicates (DUP)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Laboratory Control Samples (LCS)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Method Blanks (MB)										
Hydrocarbons in Air by USEPA TO15	EP101-H	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard			

Page : 4 of 4 Work Order : EN1804332

Client : ECOTECH PTY LTD
Project : WD4 PRIMULA AVE

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Canister Sampling - Field Data	CAN-001	AIR	In house: Referenced to USEPA TO14 / TO15
Hydrocarbons in Air by USEPA TO15	EP101-H	AIR	In house: Referenced to USEPA TO15r Volatile Organic Compounds in Air by USEPA TO15. Aliphatic and Aromatic Hydrocarbons
Hydrocarbons in Air by USEPA TO15 (mass/volume)	EP101-H-MV	AIR	In house: Referenced to USEPA TO15r Hydrocarbons in Air by USEPA TO15 (Calculated Concentration)

AIR CANISTER CHAIN OF CUSTODY

If sourced from an ALS Laboratory: please tick → Client Supplied Canister(s)?

DADELASS (1 Barra Read Persons 5- 9098 Rt. 06 9001 9991 &: zonady@salenbalous

DERESBANS DEVELORS Shallond CLD 3050 So 07 1041 TOLLS areases thomage Wides box page DC.ADSTORE - A Determinan Drive lemen G.D 1895 Por 35 Term 6000 E garasjone/Dangborg con DM CCCA: TO Marchin Word Machine OLE 4"40 Pm IT N944 0177 E Machine@becambalion

DREUBSIDERS SAMMANNE Anad Springrase VK STT. Pt. 03:4843-698 E. Sambkisherten milyansyone kom Quick 35 109 framey Raso Mulges NO 4 1090 Pt 100 6070 970% 51 mulges mas@s somosi com

UNESSCHETTLE SEES Fariant Fract Hayfor Frenchick 2004 Ft. 65 4014 2608 C. services neurosafriches criss. 1999 CINORIBA 4.15 Georg Frede Both Sature 1994 (Ast. For ET 440) 1000 1, so conditional continue.


DS-TAE- 377-250 inposters Fined Switched body 2164 at 01-779 85-19 E. Services suches the southern con-

TOWARD E FOR FORM OF THE STATE OF THE STATE

DESTINA 15 JOHN TO MANAGE FOR BOY FOR THE PART OF STATE STATE OF S

CLIENT:	ECOTECH				TURNAR	URNAROUND REQUIREMENTS: Standard TAT (List due date):							L	LABORATORY USE ONLY (Circle) Because to billet and a page 1997										
OFFICE:	1492 Ferntree	Gully Rd, KNOXF	FIELD VIC			FAT may be ex analysis suites	tended for mul	tiple		Non S	tandar	rd or ur	rgent TAT (I	List	due da	te):				133	Custody Seal Intact? Rec Lab Y / N NE Y / N NA			
PROJECT	: WD4 PRIM	ULA AVE				OTE NO.: N								(OC SEC	QUENC	E NUM	BER ((Circle)		alves closec aceipt?	en Reci	.abY/N NEY	ÐN MA
PURCHAS	SE ORDER NO	235939			COUNTR	COUNTRY OF ORIGIN:						coc	coc: C1 2 3 4 5 6					6	7 G	anister/Sam	pier Complete ar	d Not Demaged	© №	
PROJECT	MANAGER:	Lara Nicholas		CON	ITACT PH:	03 9370 78	45 0417351	053					OF:	: 1	(1) 2	: :	3 4	4 5 6			ther comme	ot:	Temperatur	e°C
SAMPLER	₹:		Daniel Raymond	SAM	PLER MO	BILE: 04194	24932		RELI	NQUI	SHED	BY:		F	ELINQ	UISHÈ	D BY:			RELING	QUISHED	BY:	RELINQUISH	ED BY:
COC Ema	iled to ALS? (YES / NO)		EDD	FORMAT	(or default):	! 						Signature and date/fire	me				Signature	and detection			Signature and distartime		Signeture and detections
Email Rep	orts to (will de	afault to PM if no ot	ther addresses are listed): lara.nicholas@eco	tech.com, daniel.rayn	nond@eco	tech.com			-	EIVED	LBY:			F	ECEIVE	ED BY	′ :			RECEIV	/ED BY:		RECEIVED B	Y:
mail Inve	pice to (will def	iault to PM if no oth	her addresses are listed): naomi.dans@ecote	ech.com					KH		250		Signature and date(in:	hae	_			Signature	and date/lim			Signature and distellime		Signature and duteAlme
COMMEN	TS/SPECIAL H	IANDLING/REPL	ACEMENT OR RETURN INSTRUCTIONS:						12/	67	118	· 1	Oar	2	_									
GAS SAMPLE CONTAINER INFORMATION							r Gauge res (PSI)	Refer to	o Canists for pressi	r Verifica Ires mea	tion Rep sured by	orts and the Lab			ANA	LYS	ES F	REQ	UES	TED		Additi	onal Info	mation
ALS USE ONLY			CANISTER / SAMPLE DETAILS					Rep	porting	Req	uirem	ents	Sı	uite	Codes	mus	t be lis	ted to	attrac	suite p	ice			
LAB ID	CANISTER	FLOW CONTROLLER	CLIENT CAMPLE ID	DATE / TIME	MATRIX	Pre- Sampling	Post Sampling		LORs		Ųn	nits	VI-V1									Comments hazards, like	on LORs requir y contaminant lev	ed, potential rels, or samples
LABID	SERIAL NO.	SERIAL NO.	CLIENT SAMPLE ID	SAMPLED	(eg Air, Soil Gas)	' "	' "	Ambient Alr	t Soll Gas (NEPM)	Other/ Indoor	p pb v, µg/m³	ppmv, mg/m³	BTEXN	ſ								requiring spec	cific QC analysis i tine method LOR after d	etc. (LOR defaults to
	4759	2831	260618	26/06/18 00:30 - 23:30	AIR	30	3	х			х		х											
2	4973	1617	020718	02/07/18 00:30 - 23:30	AIR	30	1	х			х		х											•
														İ										
													:									1		
																	·				Enviro Newca	nmental Istle	Division	
																					Worl	Order Ref	erence	
																						V1804	+332	
																				•				
																				7	elephone	: -61 2 4014 2	500)	
																				}		<u> </u>		
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																				
														į										,
iob Spec	onic Instructi	ons: Ecotech Ti	imers Sent with samples to be cleaned	a with nitrogen an	d returne	a with new	v canisters																	

AMESAMBUNG FOURMENT. PISPANGH RECORDS

Inquiries: Client Services - Newcastle Phone: +61 (02) 4014 2500

E-mail: samples.newcastle@alsenviro.com

Dispatch to:			
Client / Office:	ECOTECH	ALS Use ON	IV .
Contact:	Lara Nicholas/Daniel Raymond		
Telephone:	03 9730 7800	Request Received By:	DB 14/06/18
	NE/070/17	Deliver By:	19/06/18
ALS Quotation:		Dispatched By:	15/06/18
Delivery Address:	1492 Ferntree Gully Rd	Workorder:	10/00/10
	Knoxfield VIC 3180		
	110 0 100	Agreed Rent Free Period:	14 days

SPECIAL INSTRUCTIONS: PLEASE EMAIL CLEAN CERTIFICATES TO lara.nicholas@ecotech.com ON DISPATCH

Air Sampling Equipment Request

No Canister Type Size (Gauges Valve Cap Rental) No Returned Entech Silonite Canister (Summa™) Yes \$200 ea

CONNECTORS AND FLOW CONTROL DEVICES


No	Equipment Type	Duration (hrs)	Flow (milmin)	T- Piece	Gauge	Certified:	Sealed / Vacuum	Connection Q Quick Connect S Swagelok	tio. Reimagn	Rental
3	Passive Sampler -TWA	24hr		No	Yes	Yes	Yes / No	S		Incl Above
5	Flow Sampler Caps			No	No	No	Yes / No			\$20 ea.
5	ECOTECH Autosampler			No	No	No	Yes / No			Replacement N/A
5	'A" Swagelok connectors and ferrules (spares)			-		-	- 1			\$5 ea. Replacement

Other (specify)

¹ Refer to Acceptance of Terms

ALS use only			
Sampling Guide Included (Y / N)	Packed by:	V	The RC 13/LIE
Number of Boxes:	2	Consignment Note Number:	Dispatch Time / Date / 1 / 18/18
Courier / Dispatcher:	TNT	Consignment Dispatched by:	KIONEI

MIGHT SOLUTIONS

MAUREAMPEING FOUIPMENT: DISPATION REGORD

ALS SUPPLIED EQUIPMENT

Item	Quantity	Item Description	Serial Nos
	3	6L Silonite Summa™ canister	4759 V 4973 V 12/02 12646V2916
	3	Passive Sampler - TWA - 24hr # 4- 3 . Sm4m	2820 12107 2820 12107 2831

RIGHT SOLUTIONS

Canister No:

4759

Specified Purpose:

USEPA TO15 (Extended Suite)

Ambient Air

Verification Date: Valid To (At least): Verification File:

08-Jun-2018 06-Jul-2018 180605 08.D

Canister Type:

Entech Silonite - Summa Style

Canister Size: Vallen Tysen:

Dissatch Pressure:

Nagro estrati mete Last Stability Check: **Next Check Scheduled:** 21-Oct-2016 21-Oct-2018

Analysi:

Approved for Disputch by:

K. Gyannay

Canister Verification Protocol Canice textilic Elicros past for the superfuence and associate of temper, I mineral and adjust Grasses a resulted their occultes in the resultangues of 15 Fk methy: 1919

isch de Hitalier metlets a druck for comunication, staks and damade to values, stability drucks are ned meeter pravo o il damona la lima cambile di populari, tren energinari populari delle designates ligigling tima spets possibi Partiser a capatre pri hording the target chemicals without significant coproduction.

•		Verification						
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result				
			ppbv	ppbv				
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform		0.2	<0.2				
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride		0.2	<0.2				
1,1,2-Trichloroethane	Vinyl trichloride		0.2	<0.2				
1,1-Dichloroethane	Ethylidene chloride		0.2	<0.2				
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride		0.2	<0.2				
1,2-Dichloroethane	Ethylene chloride		0.2	<0.2				
1,2,4-Trimethylbenzene	Pseudocumene		0.2	<0.2				
1,2-Dibromoethane	EDB / Ethylene dibromide		0.2	<0.2				
1,2-Dichlorobenzene	o-Dichlorobenzene		0.2	<0.2				
1,2-Dichloropropane	Propylene dichloride		0.2	<0.2				
1,3,5-Trimethylbenzene	Mesitylene		0.2	<0.2				
1,3-Dichlorobenzene	m-Dichlorobenzene		0.2	<0.2				
1,4-Dichlorobenzene	p-Dichlorobenzene		0.2	<0.2				
Benzene	Cyclohexatriene		0.2	<0.2				
Bromomethane	Methyl bromide		0.2	<0.2				
Tetrachloromethane	Carbon tetrachloride		0.2	<0.2				
Chlorobenzene	Phenyl chloride		0.2	<0.2				
Chloroethane	Ethyl chloride		0.2	<0.2				
Chloroform	Trichloromethane		0.2	<0.2				
Chloromethane	Methyl chloride		0.2	<0.2				
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene		0.2	<0.2				
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene		0.2	<0.2				
Ethylbenzene	Phenyl ethane		0.2	<0.2				
Freon 12	Dichlorodifluoromethane		0.2	<0.2				
ากุก 11	Trichlorofluoromethane		0.2	<0.2				
്-rcun 113	1,1,2-Trichloro-1,2,2-trifluoroethane		0.2	<0.2				
Freon 114	1,2-Dichlorotetrafluoroethane		0.2	<0.2				
Hexachlorobutadiene	Hexachloro-1,3-Butadiene		0.2	<0.2				

				4 (
When the control of the Control Contro			Verification	
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result
•			ppbv	ppbv
Dichloromethane	Methylene chloride		0.2	<0.2
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene		0.4	<0.4
o-Xylene	1,2-Dimethylbenzene		0.2	<0.2
Styrene	Vinyl benzene		0.2	<0.2
Tetrachloroethene	PCE / Perchlorethylene		0.2	<0.2
Toluene	Methyl Benzene		0.2	<0.2
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene		0.2	<0.2
Trichloroethene	TCE / Trichloroethylene		0.2	<0.2
Vinyl chloride	Chloroethene		0.2	<0.2
1,2,4-Trichlorobenzene			0.2	<0.2
1,3-Butadiene	Biethylene		0.2	<0.2
1,4-Dioxane	p-Dioxane		0.2	<0.2
2,2,4-Trimethylpentane	Isooctane		0.2	<0.2
4-Ethyltoluene	p-Ethyltoluene		0.2	<0.2
Acetone	2-Propanone		0.2	<0.2
Allyl chloride	3-Chloropropene		0.2	<0.2
Bromodichloromethane	Dichlorobromomethane		0.2	<0.2
Bromoform	Tribromomethane		0.2	<0.2
Carbon disulfide	CS2		0.2	<0.2
Cyclohexane			0.2	<0.2
Dibromochloromethane	Chlorodibromoethane		0.2	<0.2
Ethyl acetate	Acetic ester		0.2	<0.2
Isopropyl alcohol	Isopropanol / 2-Propanol		0.2	<0.2
Methyl butyl ketone	MBK / 2-Hexanone		0.2	<0.2
Methyl ethyl ketone	MEK / 2-Butanone		0.2	<0.2
Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone		0.2	<0.2
Methyl tert-butyl ether	MTBE		0.2	<0.2
n-Heptane			0.2	<0.2
n-Hexane			0.2	<0.2
Propene	Propylene		0.2	<0.2
Tetrahydrofuran	THF		0.2	<0.2
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene		0.2	<0.2
Vinyl acetate	Acetic acid vinyl ester		0.2	<0.2
Bromoethene	Vinyl bromide		0.2	<0.2
Benzyl chloride	a-Chlorotoluene		0.2	<0.2
Ethanol	Ethyl alcohol		0.2	<0.2
Acetonitrile	Methyl cyanide		0.2	<0.2
Acrolein	2-Propenal		0.2	<0.2
Acrylonitrile	2-Propenenitrile		0.2	<0.2
tert-Butyl alcohol	TBA		0.2	<0.2
2-Chloroprene	2-Chloro-1,3-butadiene		0.2	<0.2
Diisopropyl Ether	DIPE		0.2	<0.2
Ethyl tert-butyl ether	ETBE		0.2	<0.2
tert-Amyl methyl ether	TAME		0.2	<0.2
Methyl methacrylate	MMA		0.2	<0.2
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride		0.2	<0.2
Isopropylbenzene	Cumene		0.2	<0.2
2-Chlorotoluene	o-Chlorotoluene		0.2	<0.2
n-Propylbenzene	Phenyl propane		0.2	<0.2
tert-Butylbenzene	1,1-Dimethylethylbenzene		0.2	<0.2
sec-Butylbenzene	1-Methylpropylbenzene		0.2	<0.2
2-Isopropyltoluene	o-Cymene		0.2	<0.2
n-Butylbenzene	Phenyl butane		0.2	<0.2
Naphthalene			0.2	<0.2

Sampler No: 2831

Specified Purpose: LORs Required:

USEPA TO15 (Extended Suite)

Ambient Air

Passive Sampler

Verification Date: Valid To (At least): Verification File:

08-Jun-2018 06-Jul-2018 180605_08.D

Flow Rate Calibrated at:

3.5

ml/min

Alt. Name

Analyst:

K. Gelderman

Verified to

Result

Calibrated by:

Sampler Type:

12/6/18

Approved for Dispatch by:

Verification Protocols
cones confid fitte guesse for the required one version and income mpless are verified clean according to the requirements of JSSPA method TCLS

Lauti car Hautita tradices a cherches cartamatanten bedes mit damagett dittings

Target Compound

rarget Compound	Ait. Name	vernieu to	Result
		ppbv	ppbv
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform	0.2	<0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride	0.2	<0.2
1,1,2-Trichloroethane	Vinyl trichloride	0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride	0.2	<0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride	0.2	< 0.2
1,2-Dichloroethane	Ethylene chloride	0.2	<0.2
1,2,4-Trimethylbenzene	Pseudocumene	0.2	<0.2
1,2-Dibromoethane	EDB / Ethylene dibromide	0.2	<0.2
1,2-Dichlorobenzene	o-Dichlorobenzene	0.2	<0.2
1,2-Dichloropropane	Propylene dichloride	0.2	<0.2
1,3,5-Trimethylbenzene	Mesitylene	0.2	<0.2
1,3-Dichlorobenzene	m-Dichlorobenzene	0.2	<0.2
1,4-Dichlorobenzene	p-Dichlorobenzene	0.2	<0.2
Benzene	Cyclohexatriene	0.2	<0.2
Bromomethane	Methyl bromide	0.2	<0.2
Tetrachloromethane	Carbon tetrachloride	0.2	<0.2
Chlorobenzene	Phenyl chloride	0.2	<0.2
Chloroethane	Ethyl chloride	0.2	<0.2
Chloroform	Trichloromethane	0.2	<0.2
Chloromethane	Methyl chloride	0.2	<0.2
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene	0.2	<0.2
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene	0.2	<0.2
[∹] thylbenzene	Phenyl ethane	0.2	<0.2
ceon 12	Dichlorodifluoromethane	0,2	<0.2
Freon 11	Trichlorofluoromethane	0.2	<0.2
Freon 113	1,1,2-Trichloro-1,1,2-trifluoroethane	0.2	<0.2
Freon 114	1,2-Dichlorotetrafluoroethane	0.2	<0.2
Hexachlorobutadiene	Hexachloro-1,3-Butadiene	0.2	<0.2

Dichioromethane	Target Compound	Alt. Name	Verified to	Result
n - & p-Xylene 1,3 & 1.4 - Dimethylbenzene 0.2 c Xylene 1,2 Dimethylbenzene 0.2 Styrene Viny berzene 0.2 Tetrachloroethene PCE / Perchlorethylene 0.2 Toluene Methyl Berzene 0.2 Trobleroethene 1.7 - Dichloropropylene 0.2 Trichloroethroe 1.2 - Dichloropropylene 0.2 Trichloroethroe 0.2 1.7 - Dichloropropylene Viryl chloride Chloroethene 0.2 1/2 - Hindroethylene 0.2 1.3 - Butatilene 1,3 - Butatilene Biethylene 0.2 1,3 - Butatilene Biethylene 0.2 1,4 - Dixane p. Dixane 0.2 2,2 - 4 - Trimelhylpentane 0.2 1,4 - Dixane p. Dixane 0.2 2,2 - 4 - Trimelhylpentane 0.2 4 - Ethyltoluene p. Ethyltoluene 0.2 4 - Ethyltoluene 0.2 2.4 4 - Ethyltoluene 0.2 2.7 4 - Ethyltoluene 0.2 2.7				ppbv
o-Xylene 1,2-Dimethybenzene 0,2 Styrene Viryl benzena 0,2 Tetrachforoethene PCE / Perchlorethylene 0,2 Tolluene Methyl Benzene 0,2 trans-1,3-Dichloropropenie trans-1,3-Dichloropropylene 0,2 Trichforde Chloroethene 0,2 1,2-4-Trichforberzene 0,2 1,3-Butatiene Biethylene 0,2 1,4-Dioxane p-Dioxane 0,2 2,4-Trimethylpentane isocctane 0,2 4-Ethyltoluene p-Ethyltoluene 0,2 4-Ethyltoluene p-Ethyltoluene 0,2 4-Ethyltoluene 0,2 0,2 Bromodichibromethane 0,2 0,2 Bromodichibromethane 0,2	· -	•		<0.2
Styrene Viny benzene 0.2 Tetrachforethere PCE / Perchforethylene 0.2 Toluene Methyl Benzene 0.2 trans-1,3-Dichloropropelne 0.2 trans-1,3-Dichloropropylene 0.2 Trichloroethene 0.2 Vinyl chloride Chloroethene 0.2 1/2,4-Trichloroberzene 0.2 1,3-Butadiene Bisthylene 0.2 1,3-Butadiene Bisthylene 0.2 1,4-Dioxane p-Dioxane 0.2 2,2-4-Trimethylpentane Isoctane 0.2 4-Ethylfolluene p-Ethylfolluene 0.2 4-Ethylfolluene 0.2 2-Propanone 0.2 Alg/ chloride 3-Chloropropene 0.2 Bromodichloromethane 0.2 2-Propanone 0.2 Cyclohexane Tribromomethane 0.2 Bromodichloromethane 0.2 2-Propanol 0.2 Cyclohexane Chlorodibromoethane 0.2 Elhyl activitife CS2 0.2 Cy			= : :	<0.4
Tetrachforoethene PCE / Perchlorethylene 0.2 Tolluene Methyl Benzene 0.2 trans-1,3-Dichloropropene trans-1,3-Dichloropropylene 0.2 Trichloroethene TCE / Trichloroethylene 0.2 Vinyl chloride Chloroethene 0.2 1,3-Butadiane Blethylene 0.2 1,4-Dioxane p-Dioxane 0.2 2,2-4-Trimethylpentane p-Ethyltolluene 0.2 4-Ethyltoluene p-Ethyltolluene 0.2 4-Ethyltoliuene p-Ethyltolluene 0.2 4-Ethyltoliuene 0.2 0.2 4-Ethyltoliuene 0.2 0.2 4-Ethyltoliuene 0.2 0.2 4-Ethyltoliuene 0.2 0.2 Bromodichloromethane 0.2 0.2 Bromodichloromethane 0.2 0.2 Bromodichloromethane 0.2 0.2 Dibromochboromethane 0.2 0.2 Birdy acetate Acetic ester 0.2 Elhyl acetate Acetic ester 0.2		•		<0.2
Toluene Methyl Benzene 0.2 trans-1,3-Dichloropropene trans-1,3-Dichloroproplene 0.2 Trichloroethene TCE / Trichloroethylene 0.2 Vinyl chloride Chloroethene 0.2 1,2,4-Tichlorobenzene 0.2 1,3-Butadiene Blethylene 0.2 1,4-Dioxane p-Dioxane 0.2 2,2-4-Tirmethylpentane lsocidane 0.2 4-Ethyltoluene p-Ethyltoluene 0.2 2,2-4-Tirmethylpentane lsocotane 0.2 Alethyltoluene 0.2 0.2 4-Ethyltoluene p-Ethyltoluene 0.2 2,2-4-Tirmethylpentane 0.2 0.2 Alethyltolium 0.2 0.2 Alethyltolium 0.2 0.2 Alethyltolium 0.2 0.2 Bromodichloromethane Dichlorobromomethane 0.2 Cyclohexane 0.2 0.2 Dibromochloromethane Chlorodibromoethane 0.2 Ethyl alechol Isopropanol / 2-Propanol 0.2				<0.2
trans-1,3-Dichloropropene trans-1,3-Dichloropropylene 0.2 7Trichloroethene 0.2 7Trichloroethylene 0.2 7Trichloroeth		-		<0.2
Trichloroethene TCE / Trichloroethylene 0.2 Vinyl chloride Chloroethene 0.2 1,2-4-Trichlorobenzene 0.2 1,3-Butadiene Biethylene 0.2 1,4-Dioxane p-Dioxane 0.2 2,2-4-Trimethylpentane Isooctane 0.2 4-Ethyltoluene p-Ethyltoluene 0.2 Acetone 2-Propanone 0.2 Ally chloride 3-Chloropropene 0.2 Bromodichloromethane Dichlorobromomethane 0.2 Bromoform Tribromomethane 0.2 Carbon disulfide CS2 0.2 Carbon disulfide CS2 0.2 Cyclohexane 0.2 0.2 Dibromochloromethane Chlorodibromeethane 0.2 Ethyl acetate Acetic ester 0.2 Bethyl acetate Acetic ester 0.2 Bethyl acetate Acetic ester 0.2 Methyl yet-bulyl ether MEE 0.2 Hetyl yet-bulyl ether MEE 0.2 Hetyla		•		<0.2
Vinyl chloride				<0.2
1,2/4 Trichlorobenzene 0.2 1,3-Butadiene Biethylene 0.2 1,4-Dioxane p-Dioxane 0.2 2,2/4-Trimethylpentane Isooctane 0.2 4-Ethyltoluene p-Ethyltoluene 0.2 4-Ethyltoloride 3-Chioropropene 0.2 Acetone 2-Propanone 0.2 Ally choride 3-Chioropropene 0.2 Bromodichloromethane 0.2 Bromoform Tribromomethane 0.2 Carbon disulfide CS2 0.2 Cyclohexane 0.2 0.2 Dibromochloromethane 0.2 0.2 Ethyl acetate Acetic ester 0.2 Isopropyl alcohol Isopropanol /2-Propanol 0.2 Methyl byl katone MBK /2-Butanone 0.2 Methyl kethyl ketone MBK /2-Butanone 0.2 Methyl kethyl ketone MIBK /4-Methyl-2-pentanone 0.2 Methyl isobutyl ketone MIBK /4-Methyl-2-pentanone 0.2 Methyl isobutyl ketone MIBK /4-Methyl-2-pentanone 0.2 <td></td> <td></td> <td></td> <td><0.2</td>				<0.2
1,3-Butadiene Biethylene 0.2 1,4-Dioxane 0.2 1,4-Dioxane 0.2 2,2,4-Trimethylpentane 0.2 4-Ethyltoluene 0.2 Acetone 2-Propanone 0.2 Alfyl chloride 3-Chloropropene 0.2 Bromodichloromethane 0.2 Bromodichloromethane 0.2 Bromodichloromethane 0.2 Carbon disulfide CS2 0.2 Cyclohexane 0.2 Dibromochloromethane 0.2 0.2 Dibromochloromethane 0.2 0.2 Dibromochloromethane 0.2 0.2 Dibromochloromethane 0.2 0.2 Ethyl acetate Acetic ester 0.2 Lethyl storlor MBK / 2-Hexanone 0.2 Methyl storly ketone MBK / 2-Butanone 0.2 <tr< td=""><td>•</td><td>Chloroethene</td><td></td><td><0.2</td></tr<>	•	Chloroethene		<0.2
1.4-Dioxane p-Dioxane 0.2 2.2.4-Trimethylpentane Isooctane 0.2 4-Ethyltoluene 0.2 Acetone 2-Propanone 0.2 Acetone 3-Chloropropene 0.2 Bromodichloromethane Dichlorobromomethane 0.2 Bromoform Tribromomethane 0.2 Carbon disulfide CS2 0.2 Cyclohexane 0.2 Dibromochloromethane 0.2 0.2 Ethyl acetate Acetic ester 0.2 Isopropal alcohol Isopropanol /2-Propanol 0.2 Methyl butyl ketone MBK /2-Hexanone 0.2 Methyl isobutyl ketone MBK /2-Butanone 0.2 Methyl isobutyl ketone MIBE 0.2 Integral <td< td=""><td>• •</td><td>The state of</td><td></td><td><0.2</td></td<>	• •	The state of		<0.2
2,2,4-Trimethylpentane İsooctane 0.2 4-Ethylboluene 0.2 4-Ethylboluene 0.2 Acetone 2-Propanone 0.2 Ally Ichloride 3-Chloropropene 0.2 Bromodichloromethane 0.2 Bromodichloromethane 0.2 Carbon disulfide CS2 0.2 Cyclohexane 0.2 Dibromochloromethane 0.2 Ethyl acetate Acetic ester 0.2 Isopropyl alcohol Isopropanol / 2-Propanol 0.2 Methyl stehone MBK / 2-Hexanone 0.2 Methyl stehol MBK / 2-Butanone 0.2 Methyl stehyl ketone MBK / 2-Butanone 0.2 Methyl stehyl ketone MIBK / 4-Methyl-2-pentanone 0.2 Methyl stehyl ketone MIBK / 4-Methyl-2-pentanone 0.2 Methyl stehyl ketone MIBK / 4-Methyl-2-pentanone 0.2 Methyl stehyl stehyl ketone MIBK / 4-Methyl-2-pentanone 0.2 Methyl stehyl stehyl stehyl ketone MIBK / 4-Methyl-2-pentanone 0.2 <t< td=""><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td><0.2</td></t<>		· · · · · · · · · · · · · · · · · · ·		<0.2
AEthyltoluene		·		<0.2
Actorne 2-Propanone 0.2 Ally chloride 3-Chloropropene 0.2 Bromodichloromethane 0.2 Bromoform Tribromomethane 0.2 Carbon disulfide CS2 0.2 Cyclohexane 0.2 0.2 Dibromochloromethane 0.2 0.2 Ethyl acetate Acetic ester 0.2 Isopropal alcohol Isopropanol / 2-Propanol 0.2 Methyl butyl ketone MBK / 2-Hexanone 0.2 Methyl butyl ketone MBK / 2-Butanone 0.2 Methyl stothyl ketone MIBK / 4-Methyl-2-pentanone 0.2 Methyl stothyl ketone Propylene 0.2 Tetrahydrofura Tetrahydrofura 0.2 Tetrahydrofura Tetrahydrofura 0.2				<0.2
Allyl chloride 3-Chloropropene 0.2 Bromodichloromethane 0.2 Bromoform Tribromomethane 0.2 Carbon disulfide CS2 0.2 Cyclohexane 0.2 0.2 Dibromochloromethane Chlorodibromethane 0.2 Ethyl acetate Acetic ester 0.2 Isopropyal alcohol Isopropanol / 2-Propanol 0.2 Methyl lethyl ketone MBK / 2-Haxane 0.2 Methyl isobutyl ketone MBK / 2-Haxane 0.2 Methyl leth-bulyl ether MTBE 0.2 n-Heytane 0.2 0.2 n-Heytane 0.2 0.2 n-Heytane 0.2 0.2 n-Heytane 0.2 0.2 r-Heytane 1.4 0.2 r-Propene				<0.2
Bromodichloromethane Dichlorobromomethane 0.2 Bromoform Tribromomethane 0.2 Carbon disulfide CS2 0.2 Cyclohexane 0.2 Dibromochloromethane Chlorodibromoethane 0.2 Ethyl acetate Acetic ester 0.2 Isopropyl alcohol Isopropanol / 2-Propanol 0.2 Methyl butyl ketone MBK / 2-Hexanone 0.2 Methyl letyl ketone MEK / 2-Butanone 0.2 Methyl tert-butyl ether MTBE 0.2 n-Heptane 0.2 0.2 Propene Propylene 0.2 Tetrahydrofuran THF 0.2 Tetrahydrofuran THF 0.2 Trans-1,2-Dichloroethene 1.2 Dichloroethylene 0.2 Viryl acetate Acetic acid vinyl ester 0.2 Viryl acetate 0.2 Ceta Bernzyl chloride 0.2 Ceta Bernzyl chloride 0.2 Ceta Bernzyl chloride 0.2 Ceta Bernzyl chloride 0.2 Ceta				<0.2
Bromoform Tribromomethane 0.2 Carbon disulfide CS2 0.2 Cyclohexane 0.2 Dibromochloromethane 0.2 Ethyl acetate Acetic ester 0.2 Isopropyal alcohol Isopropanol / 2-Propanol 0.2 Methyl butyl ketone MBK / 2-Hexanone 0.2 Methyl ethyl ethene MEK / 2-Butanone 0.2 Methyl isobutyl ketone MIBK / 4-Methyl-2-pentanone 0.2 Methyl ethyl ether MTBE 0.2 n-Hexane 0.2 0.2 Propene Propylene 0.2 Propene Propylene 0.2 Tetrahydrofuran THF 0.2 trans-1,2-Dichloroethene 1.1 0.2 Vinyl acetate 4.2-Dicker 0.2 Beropal chloride 0.2-Chlorotoluene 0.2 Ethanol 4.2-Ey aceta diviryl ester 0.2 Beropyl chloride 0.2-Chlorotoluene 0.2 Ethanol 2.2-Propenal 0.2 Acrolaritile <t< td=""><td>•</td><td></td><td></td><td><0.2</td></t<>	•			<0.2
Carbon disulfide CS2 Cyclohexane 0.2 Dibromochloromethane 0.2 Elthyl acetate Acetic ester 0.2 Isopropyl alcohol Isopropanol / 2-Propanol 0.2 Methyl butyl ketone MBK / 2-Hexanone 0.2 Methyl isobutyl ketone MIBK / 4-Methyl-2-pentanone 0.2 Methyl tert-butyl ether MTBE 0.2 n-Heptane 0.2 0.2 r-Heptane 0.2 0.2 r-Heybare 0.2 0.2 retraylorican trans-1,2-Dichloroethylene 0.2 <t< td=""><td></td><td></td><td></td><td><0.2</td></t<>				<0.2
Cyclohexane 0.2 Dibromochloromethane Chlorodibromethane Ethyl acetate Acetic ester Isopropyl alcohol Isopropanol / 2-Propanol Methyl butyl ketone MBK / 2-Hexanone Methyl ethyl ketone MEK / 2-Butanone Methyl stobutyl ketone MIBK / 4-Methyl-2-pentanone Methyl tert-butyl ether 0.2 n-Heptane 0.2 n-Heptane 0.2 n-Heyane 0.2 Propene Propylene Tetrahydrofuran THF trans-1,2-Dichloroethene trans-1,2-Dichloroethylene Vinyl acetate Acetic acid vinyl ester Vinyl acetate Acetic acid vinyl ester Vinyl bromide 0.2 Benzyl chloride 0-Chlorotoluene Ethyl alcohol 0.2 Acetoaitirle Methyl cyanide Acroleinirle 2-Propenel Acrolonitrile 2-Propenenitrile 4-Crylonitrile 2-Propenenitrile 2-Chloropropul Ether 0.2 Ethyl tert-butyl ether ETBE <td></td> <td></td> <td></td> <td><0.2</td>				<0.2
Dibromochloromethane Chlorodibromoethane 0.2 Ethyl acetate Acetic ester 0.2 Isopropyl alcohol Isopropanol / 2-Propanol 0.2 Methyl butyl ketone MBK / 2-Butanone 0.2 Methyl ethyl ketone MEK / 2-Butanone 0.2 Methyl tert-butyl ether MTBE 0.2 n-Heytane 0.2 0.2 n-Heytane 0.2 0.2 n-Heytane 0.2 0.2 r-Heytane 0.2 0.2 r-Heytane 0.2 0.2 Propene Propylene 0.2 Tetrahydrofuran THF 0.2 trans-1,2-Dichloroethene trans-1,2-Dichloroethylene 0.2 Viryl acetate Acetic acid viryl ester 0.2 Bromoethene Viryl bromide 0.2 Benzyl chloride 0-Chlorotoluene 0.2 Acetonitrile Methyl escape 0.2 Acetonitrile Methyl escape 0.2 Acrylonitrile 2-Propenalitrile 0.2	= ==::=:	CS2		<0.2
Ethyl acetate Acetic ester 0.2 Isopropyl alcohol Isopropanol / 2-Propanol 0.2 Methyl butyl ketone MBK / 2-Butanone 0.2 Methyl isobutyl ketone MIBK / 4-Methyl-2-pentanone 0.2 Methyl tert-butyl ether MTBE 0.2 n-Heptane 0.2 0.2 n-Heyane 0.2 0.2 Propene Propylene 0.2 Tetrahydrofuran THF 0.2 trans-1,2-Dichloroethylene 0.2 Virnyl acetate Acetic acid virnyl ester 0.2 Bromoethene Virnyl bromide 0.2 Bernyl chloride 0-Chlorotoluene 0.2 Bernyl chloride 0-Chlorotoluene 0.2 Ethanol Methyl cyanide 0.2 Acetonitrile Methyl cyanide 0.2 Acrylein 2-Propenal 0.2 Acrylonitrile 2-Propenel 0.2 Acrylonitrile 2-Propenel 0.2 2-Chloroprene 2-Chloroforoluene 0.2 <	Cyclohexane			<0.2
Isopropyl alcohol Isopropanol / 2-Propanol 0.2 Methyl butyl ketone MBK / 2-Hexanone 0.2 Methyl isobutyl ketone MIBK / 4-Methyl-2-pentanone 0.2 Methyl tert-butyl ether MIBK / 4-Methyl-2-pentanone 0.2 Methyl tert-butyl ether MTBE 0.2 n-Hexane 0.2 0.2 Propene Propylene 0.2 Tetrahydrofuran THF 0.2 Itrans-1,2-Dichloroethylene 0.2 Vinyl acetate Acetic acid vinyl ester 0.2 Vinyl acetate Acetic acid vinyl ester 0.2 Benzyl chloride 0-Chlorotoluene 0.2 Benzyl chloride 0-Chlorotoluene 0.2 Benzyl chloride 0-Chlorotoluene 0.2 Ethanol Ethyl alcohol 0.2 Acrolein 2-Propenal 0.2 Acrolein 2-Propenal 0.2 Acrylonitrile 2-Propenenitrile 0.2 2-Chloroprene 2-Chloro-1,3-butadiene 0.2 2-Chloroprene 2-Chloropr				<0.2
Methyl butyl ketone MBK / 2-Hexanone 0.2 Methyl ethyl ketone MEK / 2-Butanone 0.2 Methyl isobutyl ketone MIBK / 4-Methyl-2-pentanone 0.2 Methyl tert-butyl ether MIBE 0.2 n-Heptane 0.2 0.2 n-Hexane 0.2 0.2 Propene Propylene 0.2 Tetrahydrofuran THF 0.2 trans-1,2-Dichloroethylene 0.2 Vinyl acetate Acetic acid vinyl ester 0.2 Vinyl acetate Acetic acid vinyl ester 0.2 Benzyl chloride 0-Chlorotoluene 0.2 Ethanol Ethyl alcohol 0.2 Acetonitrile Methyl cyanide 0.2 Acrolein 2-Propenal 0.2 Acrylonitrile 2-Propeneiltrile 0.2 4cr-Butyl alcohol TBA 0.2 2-Chloroprene 2-Chloro-1,3-butadiene 0.2 2-Chloroprene 2-Chloro-1,3-butadiene 0.2 2-Chlyloro-1,4-but ether ETBE 0.2		Acetic ester	0.2	<0.2
Methyl ethyl ketone MEK / 2-Butanone 0.2 Methyl isobutyl ketone MIBK / 4-Methyl-2-pentanone 0.2 Methyl tert-butyl ether MTBE 0.2 n-Heptane 0.2 0.2 n-Hexane 0.2 0.2 Propene Propylene 0.2 Tetrahydrofuran THF 0.2 trans-1,2-Dichloroethene 0.2 0.2 Vinyl acetate Acetic acid vinyl ester 0.2 Vinyl acetate Acetic acid vinyl ester 0.2 Benzyl chloride 0.2 0.2 Benzyl chloride 0.2 0.2 Ethyl acetate Acetic acid vinyl ester 0.2 Benzyl chloride 0.2 0.2 Benzyl chloride 0.2 0.2 Ethyl acetate Acetic acid vinyl ester 0.2 Ethyl acetate Acetic acid vinyl ester 0.2 Ethyl acetate Methyl cyanide 0.2 Acetonitrile Methyl cyanide 0.2 Acrolein 2-Propenell 0.2 <	Isopropyl alcohol	Isopropanol / 2-Propanol	0.2	<0.2
Methyl tert-butyl ether MIBK / 4-Methyl-2-pentanone 0.2 Methyl tert-butyl ether MTBE 0.2 n-Heptane 0.2 0.2 n-Hexane 0.2 0.2 Propene Propylene 0.2 Tetrahydrofuran THF 0.2 trans-1,2-Dichloroethene trans-1,2-Dichloroethylene 0.2 Vinyl acetate Acetic acid vinyl ester 0.2 Benzyl chloride 0-Chlorotoliuene 0.2 Benzyl chloride 0-Chlorotoliuene 0.2 Ethanol Ethyl alcohol 0.2 Actolein 2-Propenal 0.2 Acrylonitrile 2-Propenenitrile 0.2 tert-Butyl alcohol TBA 0.2 2-Chloroprene 2-Chloro-1,3-butadiene 0.2 2-Chloroprene 2-Chloro-1,3-butadiene 0.2 Disopropyl Ether DIPE 0.2 Ethyl tert-butyl ether TAME 0.2 Ethyl tert-butyl ether TAME 0.2 Methyl methacrylate MMA 0.2	Methyl butyl ketone	MBK / 2-Hexanone	0.2	<0.2
Methyl tert-butyl ether MTBE 0.2 n-Heptane 0.2 n-Hexane 0.2 Propene Propylene 0.2 Tetrahydrofuran THF 0.2 trans-1,2-Dichloroethene trans-1,2-Dichloroethylene 0.2 Vinyl acetate Acetic acid vinyl ester 0.2 Bromoethene Vinyl bromide 0.2 Benzyl chloride 0-Chlorotoluene 0.2 Ethanol Ethyl alcohol 0.2 Acetonitrile Methyl cyanide 0.2 Acrolein 2-Propenal 0.2 Acrylonitrile 2-Propenal 0.2 4-Chloroprene 0.2 0.2 Disopropyl Ether DIPE 0.2 Ethyl tert-butyl ether ETBE 0.2 Ethyl tert-butyl ether ETBE 0.2 Itert-Amyl methyl ether MMA 0.2 Methyl methacrylate MMA 0.2 Methyl methacrylate MMA 0.2 J.1, 2-Tetrachloroethane R-130a / Acetylene trichloride <td>Methyl ethyl ketone</td> <td>MEK / 2-Butanone</td> <td>0.2</td> <td><0.2</td>	Methyl ethyl ketone	MEK / 2-Butanone	0.2	<0.2
n-Heptane 0.2 n-Hexane 0.2 Propene Propylene 0.2 Tetrahydrofuran THF 0.2 trans-1,2-Dichloroethene trans-1,2-Dichloroethylene 0.2 Vinyl acetate Acetic acid vinyl ester 0.2 Bromoethene Vinyl bromide 0.2 Benzyl chloride 0-Chlorotoluene 0.2 Ethanol Ethyl alcohol 0.2 Acetonitrile Methyl cyanide 0.2 Acrolein 2-Propenal 0.2 Acrylonitrile 2-Propenal 0.2 tert-Butyl alcohol TBA 0.2 2-Chloroprene 2-Chloro-1,3-butadiene 0.2 2-Chloropyl Ether DIPE 0.2 Ethyl tert-butyl ether ETBE 0.2 tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 Mishyl methacrylate MMA 0.2 Methyl methacrylate R-130a / Acetylene trichloride 0.2 1,1,1,2-Tetrachloroethane	Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone	0.2	<0.2
n-Hexane 0.2 Propene Propylene Tetrahydrofuran THF trans-1,2-Dichloroethene 0.2 Vinyl acetate Acetic acid vinyl ester Bromoethene Vinyl bromide Benzyl chloride 0-Chlorotoluene Benzyl chloride 0-Chlorotoluene Ethanol Ethyl alcohol Acetonitrile Methyl cyanide Acrylonitrile 2-Propenal etr-Butyl alcohol TBA 2-Chloroprene 0.2 2-Chloroprene 2-Chloro-1,3-butadiene Diisopropyl Ether DIPE Diisopropyl Ether DIPE Ethyl tert-butyl ether ETBE tert-Amyl methyl ether TAME Methyl methacrylate MMA Minch yl methacrylate MMA 1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 1sopropylbenzene Cumene 2-Chlorotoluene 0-Chlorotoluene n-Propylbenzene Phenyl propane tert-Butylbenzene 1,1-Dimethylethylbenzene	Methyl tert-butyl ether	MTBE	0.2	<0.2
Propene Propylene 0.2 Tetrahydrofuran THF 0.2 trans-1,2-Dichloroethene trans-1,2-Dichloroethylene 0.2 Vinyl acetate Acetic acid vinyl ester 0.2 Bromoethene Vinyl bromide 0.2 Benzyl chloride 0-Chlorotoluene 0.2 Ethanol Ethyl alcohol 0.2 Acetonitrile Methyl cyanide 0.2 Acrylonitrile 2-Propenal 0.2 Acrylonitrile 2-Propenenitrile 0.2 tert-Butyl alcohol TBA 0.2 2-Chloroprene 2-Chloro-1,3-butadiene 0.2 Diisopropyl Ether DIPE 0.2 Ethyl tert-butyl ether ETBE 0.2 tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 Methyl methacrylate R-130a / Acetylene trichloride 0.2 1,1,1,2-Tetrachloroethane 6-Chlorotoluene 0.2 1-Chlorotoluene 0-Chlorotoluene 0-Chlorotoluene 1,1-Dimethylethylbenzene<	n-Heptane		0.2	<0.2
Tetrahydrofuran THF 0.2 trans-1,2-Dichloroethene trans-1,2-Dichloroethylene 0.2 Vinyl acetate Acetic acid vinyl ester 0.2 Bromoethene Vinyl bromide 0.2 Benzyl chloride 0-Chlorotoluene 0.2 Ethanol Ethyl alcohol 0.2 Acetonitrile Methyl cyanide 0.2 Acrolein 2-Propenal 0.2 Acrylonitrile 2-Propenenitrile 0.2 tert-Butyl alcohol TBA 0.2 2-Chloroprene 2-Chloro-1,3-butadiene 0.2 Diisopropyl Ether DIPE 0.2 Ethyl tert-butyl ether ETBE 0.2 tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 Methyl methacrylate R-130a / Acetylene trichloride 0.2 Isopropylbenzene Cumene 0.2 2-Chlorotoluene 0-Chlorotofuene 0.2 n-Propylbenzene Phenyl propane 0.2 tert-Butylbenzene 0.2	n-Hexane		0.2	<0.2
trans-1,2-Dichloroethylene 0.2 Vinyl acetate Acetic acid vinyl ester 0.2 Bromoethene Vinyl bromide 0.2 Benzyl chloride 0-Chlorotoluene 0.2 Ethanol 0.2 0.2 Acetonitrile Methyl cyanide 0.2 Acrylein 2-Propenal 0.2 Acrylonitrile 2-Propenal 0.2 tert-Butyl alcohol TBA 0.2 2-Chloroprene 2-Chloro-1,3-butadiene 0.2 Diisopropyl Ether DIPE 0.2 Ethyl tert-butyl ether ETBE 0.2 tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 0.2 Isopropylbenzene Cumene 0.2 2-Chlorotoluene 0-Chlorotoluene 0.2 n-Propylbenzene Phenyl propane 0.2 tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2	Propene	Propylene	0.2	<0.2
Vinyl acetate Acetic acid vinyl ester 0.2 Bromoethene Vinyl bromide 0.2 Benzyl chloride 0-Chlorotoluene 0.2 Ethanol Ethyl alcohol 0.2 Acetonitrile Methyl cyanide 0.2 Acrolein 2-Propenal 0.2 Acrylonitrile 2-Propenenitrile 0.2 tert-Butyl alcohol TBA 0.2 2-Chloroprene 2-Chloro-1,3-butadiene 0.2 Diisopropyl Ether DIPE 0.2 Ethyl tert-butyl ether ETBE 0.2 tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 0.2 Isopropylbenzene Curmene 0.2 2-Chlorotoluene 0-Chlorotoluene 0.2 n-Propylbenzene Phenyl propane 0.2 tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2	Tetrahydrofuran	THF	0.2	<0.2
Bromoethene Vinyl bromide 0.2 Benzyl chloride 0-Chlorotoluene 0.2 Ethanol Ethyl alcohol 0.2 Acetonitrile Methyl cyanide 0.2 Acrolein 2-Propenal 0.2 Acrylonitrile 2-Propenenitrile 0.2 tert-Butyl alcohol TBA 0.2 2-Chloroprene 2-Chloro-1,3-butadiene 0.2 Diisopropyl Ether DIPE 0.2 Ethyl tert-butyl ether ETBE 0.2 tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 Methyl methacrylate MMA 0.2 1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 0.2 Isopropylbenzene Cumene 0.2 2-Chlorotoluene 0-Chlorotoluene 0.2 n-Propylbenzene Phenyl propane 0.2 tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2	trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene	0.2	<0.2
Benzyl chloride o-Chlorotoluene 0.2 Ethanol Ethyl alcohol 0.2 Acetonitrile Methyl cyanide 0.2 Acrolein 2-Propenal 0.2 Acrylonitrile 2-Propenenitrile 0.2 tert-Butyl alcohol TBA 0.2 2-Chloroprene 2-Chloro-1,3-butadiene 0.2 Diisopropyl Ether DIPE 0.2 Ethyl tert-butyl ether ETBE 0.2 tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 Methyl methacrylate MMA 0.2 1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 0.2 Isopropylbenzene Cumene 0.2 2-Chlorotoluene 0-Chlorotoluene 0.2 n-Propylbenzene Phenyl propane 0.2 tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2	Vinyl acetate	Acetic acid vinyl ester	0.2	<0.2
Ethanol Ethyl alcohol 0.2 Acetonitrile Methyl cyanide 0.2 Acrolein 2-Propenal 0.2 Acrylonitrile 2-Propenenitrile 0.2 tert-Butyl alcohol TBA 0.2 2-Chloroprene 0.2 0.2 Diisopropyl Ether DIPE 0.2 Ethyl tert-butyl ether ETBE 0.2 tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 0.2 Isopropylbenzene Curmene 0.2 2-Chlorotoluene 0-Chlorotoluene 0.2 n-Propylbenzene Phenyl propane 0.2 tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2	Bromoethene	Vinyl bromide	0.2	<0.2
Acetonitrile Methyl cyanide 0.2 Acrolein 2-Propenal 0.2 Acrylonitrile 2-Propenenitrile 0.2 tert-Butyl alcohol TBA 0.2 2-Chloroprene 0.2 2-Chloroprene 0.2 Ethyl tert-butyl ether DIPE 0.2 Ethyl tert-butyl ether ETBE 0.2 tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 0.2 Isopropylbenzene 0-Chlorotoluene 0-Chlorotoluene 0.2 2-Chlorotoluene 0-Chlorotoluene 0.2 tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2	Benzyl chloride	o-Chlorotoluene	0.2	<0.2
Acetonitrile Methyl cyanide 0.2 Acrolein 2-Propenal 0.2 Acrylonitrile 2-Propenenitrile 0.2 tert-Butyl alcohol TBA 0.2 2-Chloroprene 0.2 0.2 Diisopropyl Ether DIPE 0.2 Ethyl tert-butyl ether ETBE 0.2 tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 0.2 Isopropylbenzene Cumene 0.2 2-Chlorotoluene 0-Chlorotoluene 0.2 n-Propylbenzene Phenyl propane 0.2 tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2	Ethanol	Ethyl alcohol	0.2	<0.2
Acrolein 2-Propenal 0.2 Acrylonitrile 2-Propenenitrile 0.2 tert-Butyl alcohol TBA 0.2 2-Chloroprene 2-Chloro-1,3-butadiene 0.2 Diisopropyl Ether DIPE 0.2 Ethyl tert-butyl ether ETBE 0.2 tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 0.2 Isopropylbenzene Curmene 0.2 2-Chlorotoluene 0-Chlorotoluene 0.2 n-Propylbenzene Phenyl propane 0.2 tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2	Acetonitrile		0.2	<0.2
Acrylonitrile 2-Propenenitrile 0.2 tert-Butyl alcohol TBA 0.2 2-Chloroprene 2-Chloro-1,3-butadiene 0.2 Diisopropyl Ether DIPE 0.2 Ethyl tert-butyl ether ETBE 0.2 tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 0.2 Isopropylbenzene Curmene 0.2 2-Chlorotoluene 0-Chlorotoluene 0.2 n-Propylbenzene Phenyl propane 0.2 tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2	Acrolein	2-Propenal	0.2	<0.2
tert-Butyl alcohol TBA 0.2 2-Chloroprene 2-Chloro-1,3-butadiene 0.2 Diisopropyl Ether DIPE 0.2 Ethyl tert-butyl ether ETBE 0.2 tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 0.2 Isopropylbenzene Curmene 0.2 2-Chlorotoluene 0-Chlorotoluene 0.2 n-Propylbenzene Phenyl propane 0.2 tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2	Acrylonitrile			<0.2
2-Chloroprene 2-Chloro-1,3-butadiene 0.2 Diisopropyl Ether DIPE 0.2 Ethyl tert-butyl ether ETBE 0.2 tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 0.2 Isopropylbenzene Curmene 0.2 2-Chlorotoluene 0-Chlorotoluene 0.2 n-Propylbenzene Phenyl propane 0.2 tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2	tert-Butyl alcohol		0.2	<0.2
Diisopropyl Ether DIPE 0.2 Ethyl tert-butyl ether ETBE 0.2 tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 0.2 Isopropylbenzene Cumene 0.2 2-Chlorotoluene 0-Chlorotoluene 0.2 n-Propylbenzene Phenyl propane 0.2 tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2		2-Chloro-1,3-butadiene		<0.2
Ethyl tert-butyl ether ETBE 0.2 tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 0.2 Isopropylbenzene Cumene 0.2 2-Chlorotoluene 0-Chlorotoluene 0.2 n-Propylbenzene Phenyl propane 0.2 tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2				<0.2
tert-Amyl methyl ether TAME 0.2 Methyl methacrylate MMA 0.2 1,1,1,2-Tetrachloroethane R-130a / Acetylene trichloride 0.2 Isopropylbenzene Cumene 0.2 2-Chlorotoluene o-Chlorotoluene 0.2 n-Propylbenzene Phenyl propane 0.2 tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2				<0.2
Methyl methacrylateMMA0.21,1,1,2-TetrachloroethaneR-130a / Acetylene trichloride0.2IsopropylbenzeneCumene0.22-Chlorotolueneo-Chlorotoluene0.2n-PropylbenzenePhenyl propane0.2tert-Butylbenzene1,1-Dimethylethylbenzene0.2	•			<0.2
1,1,1,2-TetrachloroethaneR-130a / Acetylene trichloride0.2IsopropylbenzeneCumene0.22-Chlorotolueneo-Chlorotoluene0.2n-PropylbenzenePhenyl propane0.2tert-Butylbenzene1,1-Dimethylethylbenzene0.2				<0.2
IsopropylbenzeneCurmene0.22-Chlorotolueneo-Chlorotoluene0.2n-PropylbenzenePhenyl propane0.2tert-Butylbenzene1,1-Dimethylethylbenzene0.2				<0.2
2-Chlorotolueneo-Chlorotoluene0.2n-PropylbenzenePhenyl propane0.2tert-Butylbenzene1,1-Dimethylethylbenzene0.2				<0.2
n-Propylbenzene Phenyl propane 0.2 tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2				<0.2
tert-Butylbenzene 1,1-Dimethylethylbenzene 0.2				<0.2
		· · ·		<0.2
				<0.2
2-Isopropyltoluene o-Cymene 0.2				<0.2
n-Butylbenzene Phenyl butane 0.2				<0.2
Naphthalene 0.2	•	· iteriji settino		<0.2