

Accredited for compliance with ISO/IEC 17025 -Testing.

Accreditation No. 14184.

West Gate Tunnel Project

Ambient Air Quality Monitoring

Validated Report

1st April 2018 – 30th April 2018

Report No.: DAT13210

Report issue date: 8th June 2018

Maintenance contract: MC1984

ECOTECH PTY LTD. ABN: 32005752081 1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA Tel No: 1300 364 946 Fax No: 1300 668 763 Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

(West Gate Tunnel Project)

Customer Details		
Customer	CPBJH Joint Venture - West Gate Tunnel Project	
Contact name	Tim Spawton	
Address	Level 9, 5 Bowen Crescent, Melbourne Vic. 3004	
Email	westgatetunnelproject@wda.vic.gov.au	
Phone	1800 105 105	

Revision History			
Revision	Report ID	Date	Analyst
0	DAT13210	08/06/18	Diep LAM

720

Report by:

Diep LAM

Approved Signatory:

Jon ALEXANDER

- Ce

(West Gate Tunnel Project)

Table of Contents

Customer Details2
Revision History2
Table of Contents 3
List of Figures
List of Tables
Executive Summary7
Introduction
1.0 Monitoring and Data Collection
1.1. Siting Details9
1.2. Monitored Parameters11
1.3. Data Collection Methods
1.3.1. NATA Endorsement and Compliance with Standards13
1.3.2. Data Acquisition (Continuous Monitoring)14
1.3.3. Sampling and analysis for BTEX14
1.4. Data Validation and Reporting14
1.4.1. Validation14
1.4.2. Reporting15
2.0 Air Quality Standards and Goals16
3.0 Calibrations and Maintenance
3.1. Units and Uncertainties
3.2. Automatic calibration checks
3.3. Maintenance

(West Gate Tunnel Project)

3.3.	3.3.1. Maintenance notes 19				
3.3.	.2. Calibration & Maintenance Summary Tables	19			
4.0	Results	23			
4.1.	. Valid Data Capture	23			
4.2.	. Air Quality Monthly Summary	24			
4.3	. BTEX Analytical Results Summary	26			
4.4.	. Graphic Representations	27			
5.0	Valid Data Exception Table				
6.0	6.0 Report Summary41				
Apper	Appendix 1 - Definitions & Abbreviations42				
Appendix 2 - Explanation of Exception Table43					
Apper	Appendix 3 – BTEX Analytical Results				

List of Figures

Figure 1: West Gate Tunnel Project Monitoring Station Location	. 10
Figure 2: West Gate Tunnel Project - PM ₁₀ 1-day Averages for April 2018	. 27
Figure 3: West Gate Tunnel Project - PM _{2.5} 1-day Averages for April 2018	. 27
Figure 4: Station 1 - PM ₁₀ 1-hour Averages scatter plot for April 2018	. 28
Figure 5: Station 1 - PM _{2.5} 1-hour Averages scatter plot for April 2018	. 28
Figure 6: Station 1 - Monthly Wind Rose for April 2018	. 29
Figure 7: Station 2 - PM ₁₀ 1-hour Averages scatter plot for April 2018	. 29
Figure 8: Station 2 - PM _{2.5} 1-hour Averages scatter plot for April 2018	. 30
Figure 9: Station 2 - Monthly Wind Rose for April 2018	. 30

(West Gate Tunnel Project)

Figure 10: Station 3 - PM ₁₀ 1-hour Averages scatter plot for April 2018	.31
Figure 11: Station 3 - PM _{2.5} 1-hour Averages scatter plot for April 2018	.31
Figure 12: Station 3 - Monthly Wind Rose for April 2018	.32
Figure 13: Station 4 - PM ₁₀ 1-hour Averages scatter plot for April 2018	. 32
Figure 14: Station 4 - PM _{2.5} 1-hour Averages scatter plot for April 2018	. 33
Figure 15: Station 4 - CO 1-hour Averages scatter plot for April 2018	33
Figure 16: Station 4 - NO ₂ 1-hour Averages scatter plot for April 2018	.34
Figure 17: Station 4 - CO 1-hour Averages for April 2018	34
Figure 18: Station 4 - NO ₂ 1-hour Averages for April 2018	. 35
Figure 19: Station 4 - Monthly Wind Rose for April 2018	35
Figure 20: Station 5 - PM ₁₀ 1-hour Averages scatter plot for April 2018	. 36
Figure 21: Station 5 - PM _{2.5} 1-hour Averages scatter plot for April 2018	36
Figure 22: Station 5 - Monthly Wind Rose for April 2018	37

List of Tables

Table 1: West Gate Tunnel Project monitoring locations	9
Table 2: Parameters measured at the West Gate Tunnel Project monitoring stations	. 11
Table 3: Methods	. 12
Table 4: Air Quality Standards for Station 1	.16
Table 5: Air Quality Standards and Air Toxic NEPM Goals for stations 2, 3, 4 and 5	. 17
Table 6: Units and Uncertainties	. 18
Table 7: Automatic Span/Zero and Background Check Times	. 19
Table 8: Station 1 Maintenance Table April 2018	. 20

(West Gate Tunnel Project)

Table 9: Station 2 Maintenance Table April 2018	20
Table 10: Station 3 Maintenance Table April 2018	20
Table 11: Station 4 Maintenance Table April 2018	21
Table 12: Station 5 Maintenance Table April 2018	22
Table 13: West Gate Tunnel Project Monthly Data Capture for April 2018	23
Table 14: Station 1 Exceedances recorded for April 2018	24
Table 15: Station 2 Exceedances recorded for April 2018	24
Table 16: Station 3 Exceedances recorded for April 2018	25
Table 17: Station 4 Exceedances recorded for April 2018	25
Table 18: Station 4 readings above Monitoring Investigation Level recorded for April 2018	25
Table 19: Station 5 Exceedances recorded for April 2018	26
Table 20: Station 4 BTEX Analytical Results for April 2018	26
Table 21: Station 1 Valid Data Exception Table	38
Table 22: Station 2 Valid Data Exception Table	38
Table 23: Station 3 Valid Data Exception Table	38
Table 24: Station 4 Valid Data Exception Table	39
Table 25: Station 5 Valid Data Exception Table	40

(West Gate Tunnel Project)

Executive Summary

Ecotech Pty Ltd is an independent company, contracted Transurban Limited (Principal) to undertake continuous ambient air quality monitoring (AAQM) at West Gate Tunnel Project network of sites in Yarraville, Victoria, Australia. Monitoring is being conducted to inform environmental compliance requirements of the planned West Gate Tunnel Project. The air quality monitoring contract between Ecotech and Transurban Limited (Principal) has ended as per schedule in March 2018. Ecotech is assisting the D&C Subcontractor in the transition program in the month of April 2018.

The West Gate Tunnel Project monitoring network consists of five AAQM stations. Ecotech commissioned the West Gate Tunnel Project monitoring stations as following:

- Station 1 on 19th July 2016.
- Station 2 on 26th August 2016.
- Station 4 on 3rd November 2016. BTEX sampling at Station 4 commenced on 21st November 2016.
- Station 5 on 17th January 2017.
- Station 3 on 25th January 2017.

This report presents the data for April 2018.

- The percentage of valid data capture for most of parameters at West Gate Tunnel Project was above 85% for the reporting month, with the exception of PM_{2.5} at Station 5.
- The low PM_{2.5} data capture at Station 5 was due to instrument fault tape alarm from the 5th to 23rd April 2018.
- Three recorded PM₁₀ readings at Station 4 were exceeded the SEPP(AQM) Schedule B intervention levels during the reporting period. Refer to Table 17 for more details.
- Five recorded PM_{2.5} readings at stations 2, 3 and 4 were exceeded the SEPP(AQM) Schedule B intervention levels during the reporting period. Refer to Tables 15, 16 and 17 for more details.
- Four recorded PM_{2.5} readings at Station 1 were exceeded the SEPP(AAQ) EQO during the reporting period. Refer to Table 14 for more details.

(West Gate Tunnel Project)

Introduction

Ecotech Pty Ltd was commissioned by Transurban Limited (Principal) to provide monitoring and data reporting for the West Gate tunnel Project ambient air quality monitoring stations, located as detailed in Table 1. Ecotech commenced data collection at Station 1 on the 19th July 2016, at Station 2 on the 26th August 2016, and at Station 4 on the 3rd November 2016. BTEX sampling at Station 4 commenced on 21st of November 2016. Monitoring commenced at Stations 5 and 3 on the 17th and 25th of January 2017 respectively.

The monitoring contract between Ecotech and Transurban Limited (Principal) has ended in the month of March 2018 as per contract schedule. Ecotech is assisting the D&C Subcontractor in the transition program which begins in April 2018. This report presents the available data for the month of April 2018 where no formal monitoring contract were in place.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

(West Gate Tunnel Project)

1.0 Monitoring and Data Collection

1.1. Siting Details

The West Gate Tunnel Project consists of five ambient air quality monitoring stations. The station's location and siting details are described below.

Site Name	Street Address	Geographical Coordinates	Height Above Sea Level (m)	
Station 1	Barbara Beyer Reserve,	37°48'43.20"S	10m	
	2 Harris St, Yarraville	144°54'0.00"E	10111	
Station 2	51-53 Francis Street,	37°49'15.59"S	12m	
Station 2	Yarraville	144°53'38.41"E	12111	
Station 3	Railway Reserve, 37°48'50.40"S		17m	
	Woods St, Yarraville	144°53'27.60"E	1/111	
Station 4	Primula Ave, Brooklyn	37°49'27.28"S	23m	
		144°50'45.72"E	25111	
Station 5	Donald McLean	37°49'35.28"S	6m	
	Reserve, Spotswood	144°52'55.25"E	011	

Table 1: West Gate Tunnel Project monitoring locations

Siting audits were conducted to assess for compliance with *AS/NZS 3580.1.1:2016 "Methods for* sampling and analysis of ambient air – guide to siting air monitoring equipment".

Siting audits performed at West Gate Tunnel Project monitoring network as follows:

- Statin 1 on 31st July 2017.
- Station 2 on 22nd September 2017.
- Station 3 on 4th February 2018.
- Station 4 on 1st November 2017.
- Station 5 on 8th February 2018.

(West Gate Tunnel Project)

The siting audits of these stations showed general compliance with the guidelines in AS/NZS 3580.1.1:2016. These stations are classified as peak stations according to AS/NZS 3580.1.1:2016. Please see details of any non-compliance in Section 1.3.1.

The meteorological monitoring siting audits were completed at West Gate Tunnel Project as follows:

- Station 1 on 31st July 2017.
- Station 2 on 22nd September 2017.
- Station 3 on 1st February 2018.
- Station 4 on 1st November 2017.
- Station 5 on 2nd February 2018.



Figure 1: West Gate Tunnel Project Monitoring Station Location

(West Gate Tunnel Project)

1.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at West Gate Tunnel Project monitoring stations. Appendix 1 defines any abbreviated parameter names used throughout the report.

Sampling of all parameters is continuous, with the exception of BTEX. BTEX sampling is typically conducted by Ecotech on a one in six-day cycle at WD4 station. BTEX samples are collected from 12:30 AM to 11:30 PM on the sampling day. Only two BTEX samples were collected in the month of April during the transition program.

For meteorological sensors, the elevation given in Table 2 is the height above ground level at the monitoring station.

Station	Parameter Measured	Instrument and Measurement Technique
	PM ₁₀	Rupprecht & Patashnick / Thermo – TEOM (Tapered Element Oscillating Microbalance)
Stations 1, 2, 3, 4	PM _{2.5}	Met One BAM 1020 – Beta ray attenuation
and 5	Wind Speed (horizontal, elevation 10m)	Vaisala WS425 – ultrasonic
	Wind Direction (elevation 10m)	Vaisala WS425 – ultrasonic
	Benzene, Toluene, Ethyl benzene, Xylene (BTEX)	Collected In Specially-Prepared Canisters And Analysed By Gas Chromatography/Mass Spectrometry (GC/MS)
Station 4	NO, NO ₂ , NO _x	Ecotech EC9841 – gas phase chemiluminescence
	СО	Ecotech EC9830 – NDIR gas filter correlation infrared photometry

Table 2: Parameters measured at the West Gate Tunnel Project monitoring stations

(West Gate Tunnel Project)

1.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in sections 1.3.1. and 1.3.3.

Parameter Measured	Data Collection Methods Used	Description of Method
	AS/NZS 3580.5.1- 2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method
NO, NO ₂ , NO _x	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence
со	AS/NZS 3580.7.1- 2011	Methods for sampling and analysis of ambient air. Method 7.1: Determination of carbon monoxide - direct reading instrumental method
co	Ecotech Laboratory Manual	In-house method 6.3 Carbon monoxide by gas filter correlation spectrophotometry
BTEX (Sampling only)	US EPA TO-15	Method TO-15 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air Second Edition. Compendium Method TO-15 Determination of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analysed By Gas Chromatography/Mass Spectrometry (GC/MS)
	Ecotech Laboratory Manual	In-house method 6.9 Volatile organic compounds in air collected in specially prepared canisters and analysed by gas chromatography/mass spectrometry
PM ₁₀ (TEOM)	AS/NZ 3580.9.8- 2008	Methods for sampling and analysis of ambient air. Method 9.8: Determination of suspended particulate matter - PM ₁₀ continuous direct mass method using a tapered element oscillating microbalance analyser.
	Ecotech Laboratory Manual	In-house method 7.3- Particulates - $PM_{2.5}$, PM_{10} by TEOM

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method
	AS/NZS 3580.9.12 - 2013	Methods of sampling and analysis of ambient air. Method 9.12: Determination of suspended particulate matter – PM _{2.5} beta attenuation monitors
PM _{2.5} (BAM 1020)	Ecotech Laboratory Manual	In-house method 7.5 – Measurement of PM ₁₀ , PM _{2.5} and TSP using Beta Attenuation Monitor.
Vector Wind Speed (Horizontal)	AS/NZS 3580.14 2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer
Vector Wind Direction	AS/NZS 3580.14 2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer

1.3.1. NATA Endorsement and Compliance with Standards

Unless stated below, parameters are monitored at the West Gate Tunnel Project monitoring network according to the methods detailed in Table 3 above.

- Siting of all stations may not fully comply with the guidelines in AS 3580.14-2014 "Methods for sampling and analysis of ambient air Meteorological monitoring for ambient air quality monitoring applications guidelines", due to possible air flow disturbances caused by nearby trees. Locating monitoring stations in urban areas often requires compromise due to a lack of clear space areas without obstructions as well as the availability of usable power supplies. Given the location, the site is fit for purpose while not fully compliant.
- AS/NZS 3580.1.1:2007 recommends a minimum distance between inlets and the roof of the supporting structure of 1.0m. However, all stations have inlets less than 1.0m above the roof. It is not thought this small difference will have any impact on measured concentrations.

- Ecotech's NATA scope of accreditation covers sampling only for BTEX parameters. Analysis and canister preparation is conducted by NATA accredited laboratories ALS as outlined in 1.3.3 below.
- Wind sensors at WD3 and WD5 stations were out of wind tunnel calibrations from 18th January 2018 and 14th April 2018 respectively. Ecotech will try to arrange the wind tunnel calibration at the next suitable maintenance visit.

1.3.2. Data Acquisition (Continuous Monitoring)

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at each of the monitoring sites. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS loggers on a daily basis (using Airodis[™] version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5-minute intervals.

1.3.3. Sampling and analysis for BTEX

BTEX canister sampling was conducted by Ecotech field service technicians. ALS (NATA Accreditation No. 825) provided the canisters and laboratory analysis services according to method US EPA TO-15.

1.4. Data Validation and Reporting

1.4.1. Validation

The Ecotech ERS department performs daily data checks on continuously monitored parameters to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated 5-minute data, while PM_{2.5} is based on validated 1-hour data.

(West Gate Tunnel Project)

1.4.2. Reporting

The reported data for continuously monitored parameters is in a Microsoft Excel format file named "West Gate Tunnel Project Monthly Data Report_April 2018.xls".

The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Data
- 3. 1 Hour Data
- 4. 1 Day Data
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

Averages are based on a minimum of 75% valid readings within the averaging period. All averages are calculated from the 5-minute data, while PM_{2.5} averages are calculated from 1-hour data.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00am is for the data collected from 1:00am to 2:00am. For the purposes of calculating and reporting 4 and 8-hour averages, the first rolling average in a calendar day ends at 1.00 am and includes hours from the previous calendar day. One-hour averages are calculated based on a clock hour. One day and one-year averages are calculated based on calendar days.

Wind Data Reporting

Wind speed and wind direction data associated with calm wind conditions are reported in accordance with the requirements of AS 3580.14-2014. Calm wind conditions are defined as wind speeds below the starting threshold of the wind speed / direction sensors. Sensor starting thresholds are given in Table 6 under "Measurement Range".

BTEX Reporting

Results will be provided to Ecotech by the analytical laboratory and summarised within this report. Full analytical results will be included as an Appendix 3 at the end of this report.

(West Gate Tunnel Project)

2.0 Air Quality Standards and Goals

The air quality standards for pollutants monitored at the West Gate Tunnel Project monitoring network are based on:

- State Environmental Protection Policy (Ambient Air Quality) Environmental Quality Objectives (SEPP (AAQ) EQO) for WD1 (Yarraville Gardens) monitoring station, and
- State Environmental Protection Policy (Air Quality Management) (SEPP (AQM)) Schedule B for the remaining West Gate Tunnel Project monitoring stations.

The air quality goals are shown in Tables 4 and 5 below.

Parameter	Time Period	Exceedance Level	Units	Maximum allowable exceedances
PM ₁₀	1 day	50	μg/m³	None (see note)
PM ₁₀	1 year	20	μg/m³	None
PM _{2.5}	1 day	25	μg/m³	None (see note)
PM _{2.5}	1 year	8	μg/m³	None

Table 4: Air Quality Standards for Station 1

Note:

Exceptional events are excluded from this standard. As per the Ambient Air Quality NEPM, *Exceptional event* means a fire or dust occurrence that adversely affects air quality at a particular location and causes an exceedance of 1-day average standards in excess of normal historical fluctuations and background levels and is directly related to: bushfire; jurisdiction authorised hazard reduction burning; or continental scale windblown dust.

Ecotech will include any valid data identified as being associated with an exceptional event in all report tables and graphic representations. However, 1-day averages associated with exceptional events will not be counted as exceedances of the Air Quality standard.

(West Gate Tunnel Project)

Table 5: Air Quality Standards and SEPP(AQM) Goals for Station 2, 3, an .

Parameter	Time Period	Exceedance Level	Units	Maximum allowable exceedances	
СО	1 hour	29.0	ppm	-	
NO ₂	1 hour	140	ppb	-	
Benzene ¹	1 year (based on 1-day averages)	0.003	ppm	8-year goal is to gather sufficient data nationally to facilitate development of a standard.	
	1 day	1	ppm	8-year goal is to gather	
Toluene ¹	1 year (based on 1-day averages)	0.1	ppm	sufficient data nationally to facilitate development of a standard.	
	1 day	0.25	ppm	8-year goal is to gather	
Xylene ¹	1 year (based on 1-day averages)	0.2	ppm	sufficient data nationally to facilitate development of a standard.	
PM ₁₀	1 day	60	µg/m³	-	
PM _{2.5}	1 day	36	µg/m³	-	

Note:

SEPP (AQM)) Schedule B – Intervention levels for Class 1, 2 and 3 indicators:

Intervention levels are used to assess the air quality monitoring data to determine whether the beneficial uses set out in Clause 9 of this Policy are being protected. Intervention levels are not used in the assessment of the design of individual sources. An intervention level is numerically greater than the design criteria for a given pollutant as it does not apply to an individual source but to all sources of the pollutant within a defined area.

¹ This value is monitoring investigation level of air pollution only, not limits according to Legislation F2011C00855 - National Environment Protection (Air Toxic) Measure 2011.

(West Gate Tunnel Project)

3.0 Calibrations and Maintenance

3.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Parameter	Units	Resolution	Uncertainty	Measurement Range ²
NO, NO _x (EC9841)	ppb	1 ppb	± 13 ppb or 10% of reading K factor of 2.0	0 ppb to 500 ppb
NO ₂ (EC9841)	ppb	1 ppb	± 17 ppb K factor of 2.0	0 ppb to 500 ppb
CO (EC9830)	ppm	0.1 ppm	± 1 ppm or 10% of reading, K factor of 2.0	0 ppm to 50 ppm
PM ₁₀ (TEOM)	µg/m³	0.1 μg/m³	±5.0 μg/m³ or 3.6% of reading, K factor of 2.0	0 μg/m ³ to 1 g/m ³
PM _{2.5} (BAM 1020)	µg/m³	1 μg/m³	±5.0 μg/m ³ + 5.4% of reading, K factor of 2.0	5 to 1000 μg/m³
Vector Wind Speed	m/s	0.1 m/s	±0.4 m/s or 2.0% of reading, K factor of 2.0	0 m/s to 30 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.0	0 deg to 360 deg Starting threshold: 0 m/s

Table 6: Units and Uncertainties

 $^{^2}$ Uncertainties may not be calculated based on the full measurement range. Uncertainty for CO by EC9830 is calculated based on a range of 0-10 ppm. Uncertainty for NO, NO₂ and NO_x by EC 9841 are calculated based on a measurement range of 0-125 ppb.

(West Gate Tunnel Project)

3.2. Automatic calibration checks

Automatic span, zero and background checks occur each night for continuously monitored gaseous parameters. Data associated with these checks is invalidated and is not specifically referred to in the valid data exception reports. Table 7 displays the times for when these checks occur.

Parameter	Span/Zero	Background
СО	01:00 to 01:25	23:45 to 23:55
NO, NO ₂ , NO _x	01:00 to 01:25	-

Table 7: Automatic Span/Zero and Background Check Times

3.3. Maintenance

3.3.1. Maintenance notes

Only basic maintenance was performed at these stations during April 2018 due to the expiration of the operation and maintenance contract. This included response to breakdowns and may have resulted in reduced data capture.

3.3.2. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Tables 8 – 12 on the next pages indicate when the particulate, gas and meteorological equipment were last maintained/calibrated.

(West Gate Tunnel Project)

Table 8: Station 1 Maintenance Table April 2018

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
PM ₁₀	05/04/18	Monthly	02/02/18	6-Monthly
PM _{2.5}	23/04/18	Non-scheduled	05/04/18	Yearly
Wind Speed	05/04/18	Monthly	04/05/16 ³	2-Yearly
Wind Direction	05/04/18	Monthly	04/05/16 ³	2-Yearly

Table 9: StationMaintenance Table April 2018

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
PM ₁₀	03/04/18	3 Monthly	01/02/18	6-Monthly
PM _{2.5}	03/04/18	Monthly	07/03/18	Yearly
Wind Speed	03/04/18	Monthly	24/05/16 ⁴	2-Yearly
Wind Direction	03/04/18	Monthly	24/05/164	2-Yearly

Table 10: Station 3 Maintenance Table April 2018

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
PM10	04/04/18	3 Monthly	01/02/18	6-Monthly
PM _{2.5}	04/04/18	3 Monthly	07/03/18	Yearly

³ Wind tunnel calibration performed on 04/05/2016 and installed at Station 1 on 22/07/2016.

⁴ Wind tunnel calibration performed on 24/05/2016 and installed at Station 2 on 12/09/2016.

(West Gate Tunnel Project)

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
Wind Speed	04/04/18	Monthly	18/01/165	2-Yearly
Wind Direction	04/04/18	Monthly	18/01/165	2-Yearly

Table 11: Station 4 Maintenance Table April 2018

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
PM ₁₀	05/04/18	6 Monthly	05/04/18	6-Monthly
PM _{2.5}	23/04/18	6 Monthly	05/04/18	Yearly
СО	23/04/18	6 Monthly	06/04/18	Monthly
NO, NO ₂ , NO _x	23/04/18	6 Monthly	06/04/18	Monthly
BTEX	10/04/18	Weekly	Every sample	On supply of flow controller ⁶
Wind Speed	05/04/18	Monthly	21/10/16 ⁷	2-Yearly
Wind Direction	05/04/18	Monthly	21/10/16 ⁷	2-Yearly

⁶ Sampling flow orifice checks and calibrations performed by ALS for each orifice mass flow controller supplied.

Records are held by Ecotech and available on request.

⁵ Wind tunnel calibration performed on 18/01/2016 and installed at Station 3 on 06/02/2017.

⁷ Wind tunnel calibration performed on 21/10/2016 and installed at Station 4 on 22/11/2016.

(West Gate Tunnel Project)

Table 12: Station 5 Maintenance Table April 2018

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
PM10	05/04/18	3 Monthly	07/03/18	6-Monthly
PM _{2.5}	23/04/18	Non-scheduled	07/03/17	Yearly
Wind Speed	05/04/18	Monthly	15/04/16 ⁸	2-Yearly
Wind Direction	05/04/18	Monthly	15/04/16 ⁸	2-Yearly

 $^{^{8}}$ Wind tunnel calibration performed on 15/04/2016 and installed at Station 5 on 27/01/2017.

(West Gate Tunnel Project)

4.0 Results

4.1. Valid Data Capture

Valid data capture refers to the amount of valid data collected during the report period. It is based on 5-minute data for all continuously monitored parameters, with the exception of PM_{2.5}. The PM_{2.5} data is based on 1-hour data.

The percentage of valid data captured is calculated using the following equation:

Percentage Valid Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of samples (instrument readings) which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, equipment failures, planned and unplanned maintenance.
- Total data = Total number of samples (instrument readings) expected for the sampling period. Total data is calculated based on the same averaging period as "reported air quality data" and the duration of the corresponding report period. e.g. for 5-minute data collected over a month of 31 days, the total data would be equal to 12 (5-minute samples in an hour) x 24 (hours in a day) x 31 (days in a month) = 8928 samples.

Table 13 below displays data capture statistics for April 2018. **Bold** values in the table indicates the of percentage valid data capture below 85%.

Parameter	Station 1 (%)	Station 2 (%)	Station 3 (%)	Station 4 (%)	Station 5 (%)
PM ₁₀	99.8	99.8	99.7	99.8	99.4
PM _{2.5}	99.6	99.6	99.9	95.4	39.0
WS, WD	100.0	100.0	100.0	100.0	99.9
СО	-	-	-	97.0	-
NO, NO ₂ , NO _x	-	-	-	97.8	-
BTEX	-	-	-	100.0	-

Table 13: West Gate Tunnel Project Monthly Data Capture for April 2018

(West Gate Tunnel Project)

4.2. Air Quality Monthly Summary

Tables 14 - 19 below include a summary of any air quality exceedances recorded at West Gate Tunnel Project during the report period.

Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance	
PM10	1 day	50 μg/m³	None recorded	-	-	
		25 μg/m³ 4			40 μg/m³	20/04/18
DNA	1 dov		4	38 μg/m³	21/04/18	
P IVI2.5	PM _{2.5} 1 day 2		4	36 µg/m³	22/04/18	
					31 μg/m³	23/04/18
PM10	1 year	20 μg/m³	None recorded	-	-	
PM _{2.5}	1 year	8 μg/m³	None recorded	-	-	

Table 14: Station 1 Exceedances recorded for April 2018

Table 15: Station 2 Exceedances recorded for April 2018

Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance	
PM ₁₀	1 day	60 μg/m³	None recorded	-	-	
PM _{2.5}	1 day	36 μg/m³	1	39 μg/m³	20/04/18	

(West Gate Tunnel Project)

Table 16: Station 3 Exceedances recorded for April 2018

Parameter	Time Period	ExceedanceNumber ofLevelexceedances		Value of Exceedance	End Date/Time of Exceedance
PM10	1 day	60 μg/m³	None recorded	-	-
DM	1 day	36 μg/m³	2	39 μg/m³	20/04/18
PM _{2.5}	1 day 36 μg/m ³	50 μg/11		37 μg/m³	21/04/18

Table 17: Station 4 Exceedances recorded for April 2018

Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance
				66.4 μg/m³	10/04/18
PM ₁₀	1 day	60 μg/m³	3	64.7 μg/m³	19/04/18
				70.1 μg/m³	24/04/18
	1 day	36 µg/m³	2	40 μg/m³	20/04/18
PM _{2.5}				38 μg/m³	21/04/18
со	1 hour	29 ppm	None recorded	-	-
NO ₂	1 hour	140 ppb	None recorded	-	-

Table 18: Station 4 readings above Monitoring Investigation Level recorded for April 2018

Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance	
Toluene	1 day	1 ppm	None recorded	-	-	
Xylenes	1 day	0.25 ppm	None recorded	-	-	

(West Gate Tunnel Project)

Table 19: Station 5 Exceedances recorded for April 2018

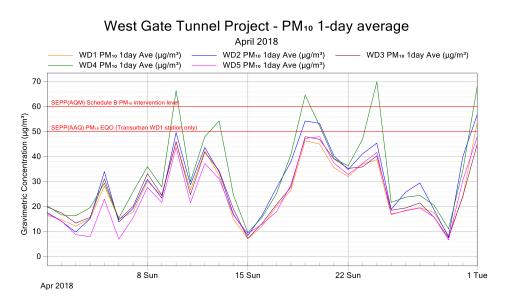
Parameter	Time Period	Exceedance Level	Number of exceedances	Value of Exceedance	End Date/Time of Exceedance
PM ₁₀	1 day	60 μg/m³	None recorded	-	-
PM _{2.5}	1 day	36 µg/m³	None recorded	-	-

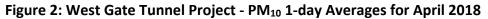
4.3. BTEX Analytical Results Summary

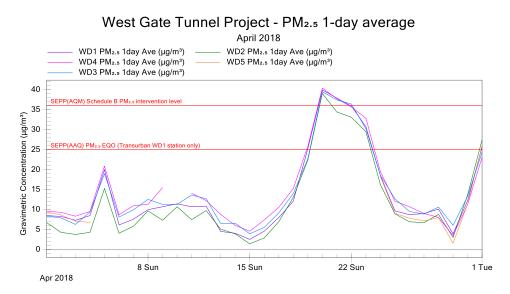
Table 20 below displays a summary of the analytical results for BTEX during the reporting period. Full analysis reports from ALS are included in Appendix 3. Results displayed as "<x ppb" indicated a reading below the lower detectable limit.

Parameter	NEMP MIL	Units	Samples	
Canister Number			C4986	C12624†
Sample Date			03/04/18	09/04/18
Final Vacuum		inHg	5	3
Benzene	3 (1 year)	ppb	<0.5	<0.5
Toluene	1000 (1 day) 100 (1 Year)	ppb	0.7	1
Ethyl benzene	-	ppb	<0.5	<0.5
m,p-xylenes	250 (1 day)	ppb	<1.0	<1.0
o-xylene	(1 day) 200 (1 Year)	ppb	<0.5	<0.5

Table 20: Station 4 BTEX Analytical Results for April 2018

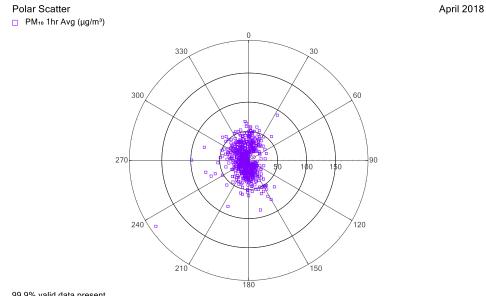

⁺Sample flow may have decreased towards the end of the 24 hours sampling period. Therefore, the reported result may not be fully representative of the 24-hour average concentration.

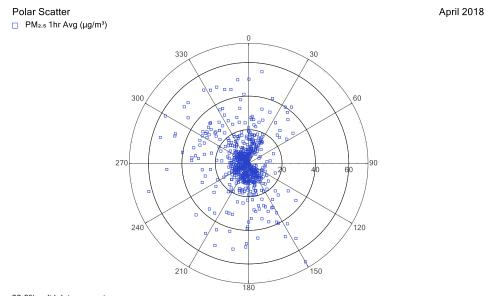

(West Gate Tunnel Project)



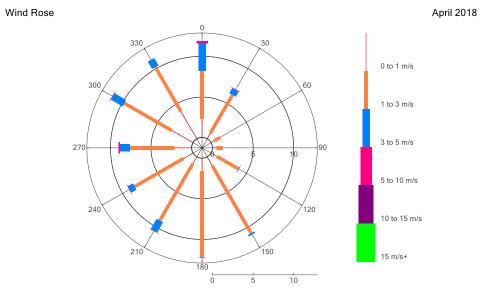
4.4. Graphic Representations

Validated 5-minute data for NO, NO₂, NO_x, CO and PM_{10} , and validated 1-hour data for $PM_{2.5}$ were used to construct the following monthly graphic representations.




(West Gate Tunnel Project)

99.9% valid data present



99.6% valid data present

(West Gate Tunnel Project)

100.0% valid data present

Figure 6: Station 1 - Monthly Wind Rose for April 2018

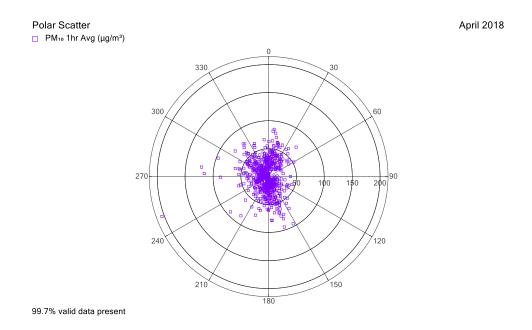
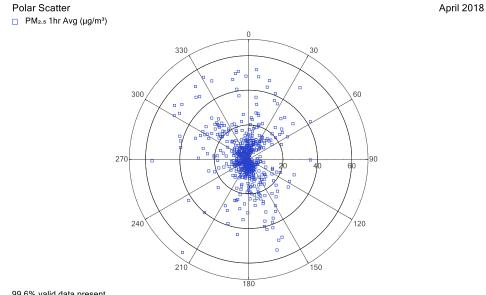
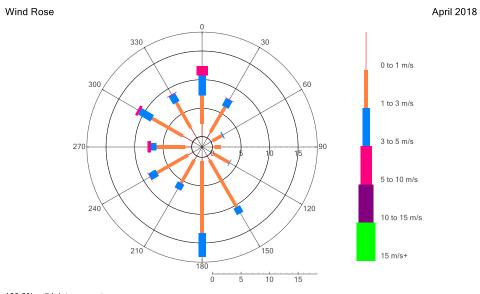
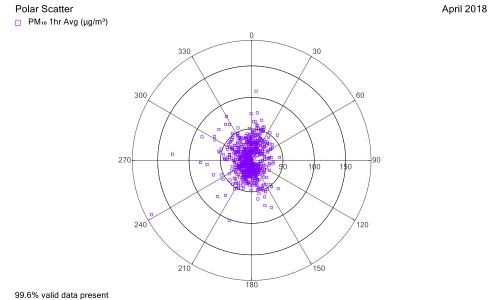



Figure 7: Station 2 - PM₁₀ 1-hour Averages scatter plot for April 2018


(West Gate Tunnel Project)

99.6% valid data present

Figure 8: Station 2 - PM_{2.5} 1-hour Averages scatter plot for April 2018



100.0% valid data present

Figure 9: Station 2 - Monthly Wind Rose for April 2018

(West Gate Tunnel Project)

Figure 10: Station 3 - PM₁₀ 1-hour Averages scatter plot for April 2018

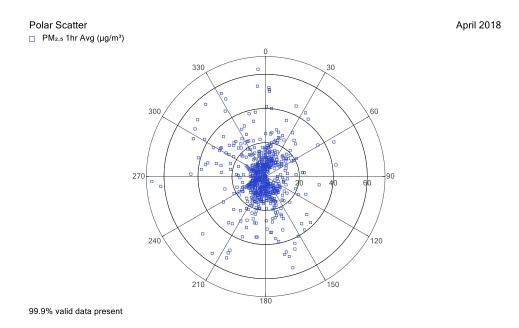
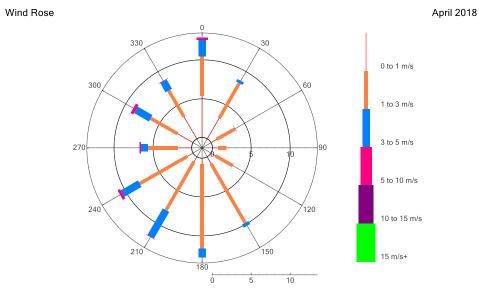



Figure 11: Station 3 - PM_{2.5} 1-hour Averages scatter plot for April 2018

(West Gate Tunnel Project)

100.0% valid data present

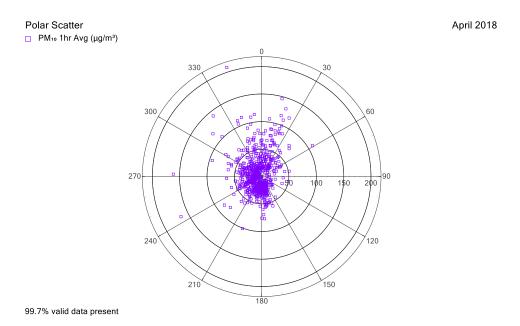
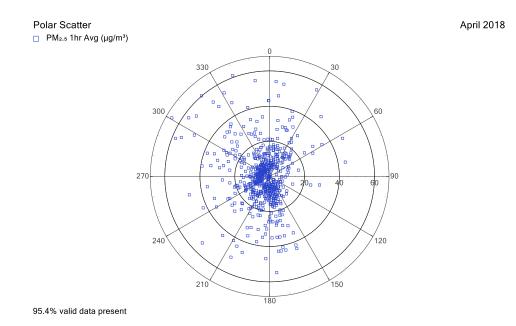



Figure 13: Station 4 - PM₁₀ 1-hour Averages scatter plot for April 2018

(West Gate Tunnel Project)

Figure 14: WStation 4- PM_{2.5} 1-hour Averages scatter plot for April 2018

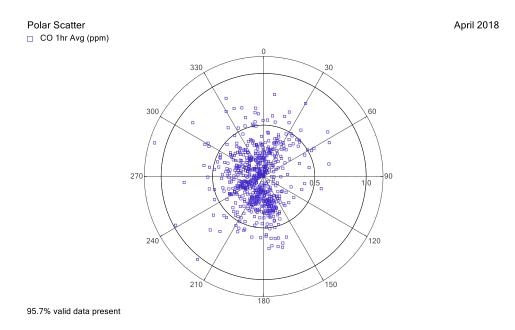
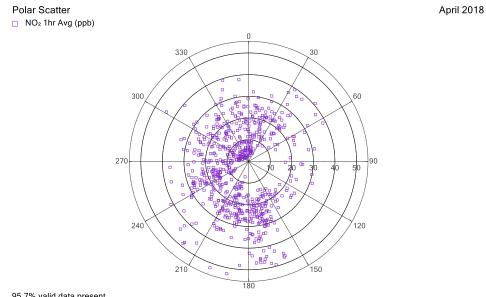



Figure 15: Station 4 - CO 1-hour Averages scatter plot for April 2018

(West Gate Tunnel Project)

95.7% valid data present

Figure 16: Station 4 - NO₂ 1-hour Averages scatter plot for April 2018

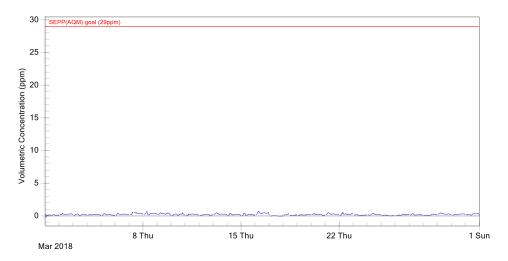
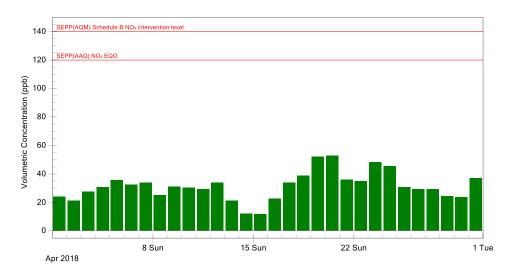
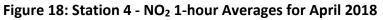




Figure 17: Station 4 - CO 1-hour Averages for April 2018

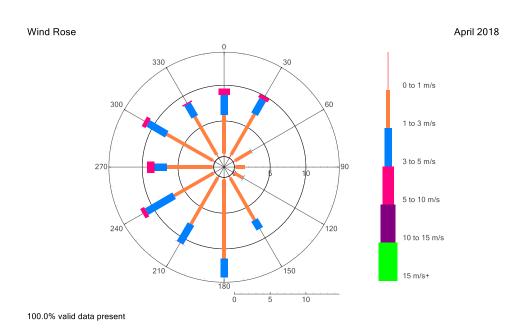
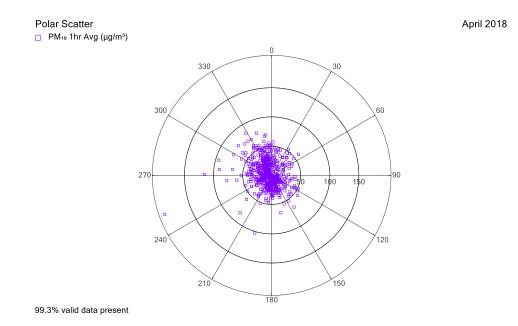



Figure 19: Station 4 - Monthly Wind Rose for April 2018

(West Gate Tunnel Project)

Figure 20: Station 5 - PM₁₀ 1-hour Averages scatter plot for April 2018

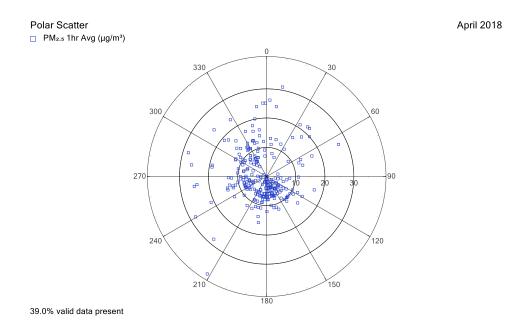
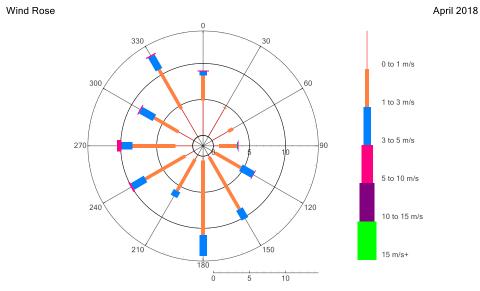



Figure 21: Station 5 - PM_{2.5} 1-hour Averages scatter plot for April 2018

(West Gate Tunnel Project)

99.9% valid data present

Figure 22: Station 5 - Monthly Wind Rose for April 2018

(West Gate Tunnel Project)

5.0 Valid Data Exception Table

Tables 21 - 25 below detail all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Start Date	End Date	Reason	Change Details	User Name	Change Date
05/04/18 10:00	05/04/18 12:00	Scheduled monthly maintenance	PM _{2.5} , PM ₁₀	DL	17/05/18
23/04/18 16:00	23/04/18 16:00	Non-scheduled maintenance - Tape replaced	PM _{2.5}	DL	17/05/18

Table 21: Station 1 Valid Data Exception Table

Table 22: Station 2 Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
03/04/18 10:00	03/04/18 12:20	Scheduled monthly maintenance	PM _{2.5} , PM ₁₀	DL	17/05/18
29/04/18 01:00	29/04/18 01:00	Unrealistic data - Readings below the instrument range	PM _{2.5}	DL	17/05/18

Table 23: Station 3 Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
04/04/18 12:00	04/04/18 14:30	Scheduled 3 monthly maintenance	PM _{2.5} , PM ₁₀	DL	17/05/18
23/04/18 15:45	23/04/18 16:00	Non-scheduled maintenance - Tape replaced	No data affected	DL	17/05/18

(West Gate Tunnel Project)

Table 24: Station 4 Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/04/18 01:30	30/04/18 01:30	Additional instrument stabilisation following the automatic span checks	СО	DL	17/05/18
02/04/18 03:00	11/04/18 00:00	Intermittent unrealistic data - Readings below the instrument range and high level of noise	PM _{2.5}	DL	17/05/18
05/04/18 12:00	05/04/18 15:05	Scheduled 6 monthly maintenance and Canister changed over	PM _{2.5} , PM ₁₀	DL	17/05/18
06/04/18 09:05	06/04/18 09:55	Scheduled 6 monthly maintenance (cont.)	CO, NO, NO ₂ , NO _x	DL	17/05/18
08/04/18 20:00	08/04/18 21:00	Brief power interruption and subsequent instrument stabilisation	PM _{2.5}	DL	17/05/18
09/04/18 00:30	09/04/18 23:30	Sample 12624 flow final vacuum was low. Sample flow may have decreased towards the end of the 24 hours sampling period. Therefore, the reported result may not be fully representative of the 24 hours average concentration	BTX TO-15	DL	17/05/18
10/04/18 08:00	10/04/18 08:00	Scheduled weekly maintenance - BTX TO-15 Canister removed	No data affected	DL	17/05/18
19/04/18 03:00	19/04/18 03:00	Data transmission error	WS & WD	DL	17/05/18
23/04/18 16:00	23/04/18 17:00	Non-scheduled maintenance - Tape replaced and gas calibration checks	PM _{2.5} , CO, NO, NO ₂ , NO _x	DL	17/05/18

Table 25: Station 5 Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
04/04/18 10:00	04/04/18 14:30	Scheduled 3 monthly maintenance	PM _{2.5} , PM ₁₀	DL	17/05/18
05/04/18 09:20	28/04/18 10:20	Intermittent unrealistic data - WS spikes and not tracking with other sites	WS & WD	DL	17/05/18
05/04/18 11:00	23/04/18 15:00	Instrument fault - Tape alarm	PM _{2.5}	DL	17/05/18
06/04/18 09:10	06/04/18 09:30	Unrealistic data - Possible moisture interference	PM ₁₀	DL	17/05/18
23/04/18 16:00	23/04/18 16:00	Non-scheduled maintenance - Tape replaced	PM _{2.5}	DL	17/05/18

(West Gate Tunnel Project)

6.0 Report Summary

- The percentage of valid data capture for most of parameters at West Gate Tunnel Project monitoring network was above 85% for the reporting month, with the exception of PM_{2.5} at Station 5.
- The low PM_{2.5} data capture at Station 5 was due to instrument fault tape alarm from the 5th to 23rd April 2018.
- The flow final vacuum of canister sampled on the 9th April 2018 was low. The sample flow may have decreased towards the end of the 24 hours sampling period. Therefore, the reported results may not be fully representative of the 24-hour average concentration. Refer to Table 20 for more details.
- Three recorded 24-hour PM₁₀ reading at Station 4 exceeded the SEPP(AQM) Schedule B intervention levels during the reporting period. Refer to Table 17 for more details.
- Five recorded 24-hour PM_{2.5} reading at Stations 2, 3 and 4 exceeded the SEPP(AQM) Schedule B intervention levels during the reporting period. Refer to Tables 15, 16 and 17 for more details.
- Four recorded 24-hour PM_{2.5} reading at Station 1 exceeded the SEPP(AAQ) EQO levels during the reporting period. Refer to Table 14 for more details.

-----END OF REPORT-----

(West Gate Tunnel Project)

Appendix 1 - Definitions & Abbreviations

μg/m³	Micrograms per cubic metre at standard temperature and pressure (0°C and 101.3 kPa)
BTEX	Benzene, Toluene, Ethyl Benzene and Xylene <i>ortho-, meta-</i> and <i>para-</i> isomers
calm	Wind conditions where the wind speed is below the operating range of the wind sensor
СО	Carbon monoxide
deg	Degrees (True North)
m/s	Metres per second
NO	Nitric oxide
NO ₂	Nitrogen dioxide
NO _x	Oxides of nitrogen
PM ₁₀	Particulate less than 10 microns in equivalent aerodynamic diameter
PM _{2.5}	Particulate less than 2.5 microns in equivalent aerodynamic diameter
ррb	Parts per billion
ppm	Parts per million
SEPP (AAQ) EQO	State Environmental Protection Policy (Ambient Air Quality) Environmental Quality Objectives
SEPP (AQM)	State Environmental Protection Policy (Air Quality Management)
Sigma	Sigma Theta is the standard deviation of the horizontal wind direction fluctuations over the averaging period.
WD	Vector Wind Direction
WS	Vector Wind Speed

(West Gate Tunnel Project)

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Beta count failure refers to a fault in the functioning of the beta attenuation monitor.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance.

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

(West Gate Tunnel Project)

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Overnight zero out of tolerance refers to when the automatic zero reading measured by the analyser falls outside the expected limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Tape break refers to the breaking of the beta attenuation monitor sample tape during operation.

Warm up after power interruption refers to the start up period of an instrument after power has been restored.

(West Gate Tunnel Project)

Appendix 3 – BTEX Analytical Results

CERTIFICATE OF ANALYSIS

Work Order	EN1802617	Page	: 1 of 4
Client	ECOTECH PTY LTD	Laboratory	: Environmental Division Newcastle
Contact	: LARA NICHOLAS	Contact	: Hayley Withers
Address	: 1492 FERNTREE GULLY ROAD	Address	: 5/585 Maitland Road Mayfield West NSW Australia 2304
	KNOXFIELD VICTORIA, AUSTRALIA 3180		
Telephone	: +61 03 9730 7800	Telephone	: +612 4014 2500
Project	: WD4 PRIMULA AVE	Date Samples Received	: 19-Apr-2018 09:30
Order number	: 234215	Date Analysis Commenced	20-Apr-2018
C-O-C number	:	Issue Date	24-Apr-2018 17:00
Sampler	: DANIEL RAYMOND		Iac-MRA NATA
Site	:		
Quote number	: NE/070/17		Accreditation No. 825
No. of samples received	: 2		Accredited for compliance with
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Po	Position	Accreditation Category
Dale Semple A	nalyst	Newcastle - Organics, Mayfield West, NSW
Dale Semple A	nalyst	Newcastle, Mayfield West, NSW
Daniel Junek Se	Senior Air Analyst	Newcastle - Organics, Mayfield West, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 \emptyset = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EP101: Results reported in µg/m³ are calculated from PPBV results based on a temperature of 25°C and atmospheric pressure of 101.3 kPa.
- CAN-001: Results for Pressure As Received are measured under controlled conditions using calibrated laboratory gauges. These results are expressed as an Absolute Pressure. Equivalent gauge pressures may be calculated by subtracting the Pressure Laboratory Atmosphere taken at the time of measurement.
- CAN-001: Results for Pressure Gauge as Received are obtained from uncalibrated field gauges and are indicative only. These results may not precisely match calibrated gauge readings and may vary from field
 measurements due to changes in temperature and pressure

Page	3 of 4
Work Order	: EN1802617
Client	: ECOTECH PTY LTD
Project	: WD4 PRIMULA AVE

Analytical Results

Sub-Matrix: AIR (Matrix: AIR)		Clie	ent sample ID	030418 C4986_S2846	090418 C12624_S2833	 	
	Cli	ent sampli	ng date / time	03-Apr-2018 23:30	09-Apr-2018 23:30	 	
Compound	CAS Number	LOR	Unit	EN1802617-001	EN1802617-002	 	
				Result	Result	 	
EP101: VOCs by USEPA Method TO	15 (Calculated Conce	ntration)					
Benzene	71-43-2	1.6	µg/m³	<1.6	<1.6	 	
Toluene	108-88-3	1.9	µg/m³	2.6	3.8	 	
Ethylbenzene	100-41-4	2.2	µg/m³	<2.2	<2.2	 	
meta- & para-Xylene	108-38-3 106-42-3	4.3	µg/m³	<4.3	<4.3	 	
ortho-Xylene	95-47-6	2.2	µg/m³	<2.2	<2.2	 	
Naphthalene	91-20-3	2.6	µg/m³	<2.6	<2.6	 	
Total Xylenes		6.6	µg/m³	<6.6	<6.6	 	
EP101: VOCs by USEPA Method TO	15r						
Benzene	71-43-2	0.5	ppbv	<0.5	<0.5	 	
Toluene	108-88-3	0.5	ppbv	0.7	1.0	 	
Ethylbenzene	100-41-4	0.5	ppbv	<0.5	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	1.0	ppbv	<1.0	<1.0	 	
ortho-Xylene	95-47-6	0.5	ppbv	<0.5	<0.5	 	
Naphthalene	91-20-3	0.5	ppbv	<0.5	<0.5	 	
Total Xylenes		1.5	ppbv	<1.5	<1.5	 	
Sampling Quality Assurance							
Pressure - As received	PRESSURE	0.1	kPaa	98.2	96.0	 	
Pressure - Gauge as Received		1	Inches Hg	-5	-3	 	
Pressure - Laboratory Atmosphere		0.1	kPaa	102	102	 	
Temperature as Received		0.1	°C	21.0	21.0	 	
USEPA Air Toxics Method TO15r Su	rrogates						
4-Bromofluorobenzene	460-00-4	0.5	%	97.3	98.7	 	

Page	: 4 of 4
Work Order	: EN1802617
Client	: ECOTECH PTY LTD
Project	: WD4 PRIMULA AVE

Surrogate Control Limits

Sub-Matrix: AIR		Recovery	Limits (%)
Compound	CAS Number	Low	High
USEPA Air Toxics Method TO15r Surrogates			
4-Bromofluorobenzene	460-00-4	60	140

QUALITY CONTROL REPORT

Work Order	: EN1802617	Page	: 1 of 3	
Client		Laboratory	: Environmental Division N	Jewcastle
Contact	: LARA NICHOLAS	Contact	: Hayley Withers	
Address	: 1492 FERNTREE GULLY ROAD KNOXFIELD VICTORIA, AUSTRALIA 3180	Address	: 5/585 Maitland Road Ma	yfield West NSW Australia 2304
Telephone	: +61 03 9730 7800	Telephone	: +612 4014 2500	
Project	: WD4 PRIMULA AVE	Date Samples Received	: 19-Apr-2018	
Order number	: 234215	Date Analysis Commenced	: 20-Apr-2018	
C-O-C number	:	Issue Date	24-Apr-2018	
Sampler	: DANIEL RAYMOND			Hac-MRA NATA
Site	:			
Quote number	: NE/070/17			Accreditation No. 825
No. of samples received	: 2			Accredited for compliance with
No. of samples analysed	: 2			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report ; Recovery and Acceptance Limits
- Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dale Semple	Analyst	Newcastle - Organics, Mayfield West, NSW
Dale Semple	Analyst	Newcastle, Mayfield West, NSW
Daniel Junek	Senior Air Analyst	Newcastle - Organics, Mayfield West, NSW

Page	: 2 of 3
Work Order	: EN1802617
Client	: ECOTECH PTY LTD
Project	: WD4 PRIMULA AVE

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: AIR				Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
EP101: VOCs by US	EPA Method TO15r (QC Lo											
EN1802617-001	030418 C4986_S2846	EP101-H: Benzene	71-43-2	0.5	ppbv	<0.5	<0.5	0.00	No Limit			
		EP101-H: Toluene	108-88-3	0.5	ppbv	0.7	0.7	0.00	No Limit			
		EP101-H: Ethylbenzene	100-41-4	0.5	ppbv	<0.5	<0.5	0.00	No Limit			
		EP101-H: ortho-Xylene	95-47-6	0.5	ppbv	<0.5	<0.5	0.00	No Limit			
		EP101-H: meta- & para-Xylene	108-38-3	1	ppbv	<1.0	<1.0	0.00	No Limit			
			106-42-3									

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control terms Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (DCS) refers to certified reference materials, or known interference free matrices spiked with target analytes. The purpose of these QC parameters are to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS and DCS.

Sub-Matrix: AIR			Method Blank (MB	3) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report											
					Spike	Spike Red	overy (%)	Recovery	Limits (%)	RPDs (%)						
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit					
EP101: VOCs by USEPA Method TO15r (QCLot: 1587996)																
EP101-H: Benzene	71-43-2	0.5	ppbv	<0.5	100 ppbv	89.5	88.2	77	114	25	25					
EP101-H: Toluene	108-88-3	0.5	ppbv	<0.5	100 ppbv	89.7	89.3	78	115	25	25					
EP101-H: Ethylbenzene	100-41-4	0.5	ppbv	<0.5	100 ppbv	83.3	82.8	82	121	25	25					
EP101-H: meta- & para-Xylene	108-38-3	1	ppbv	<1.0	200 ppbv	82.8	82.2	82	122	25	25					
	106-42-3															
EP101-H: ortho-Xylene	95-47-6	0.5	ppbv	<0.5	100 ppbv	84.3	83.8	83	122	25	25					

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

	QA/QC Complian	ce Assessment to assist wit	h Quality Review	
Work Order	: EN1802617	Page	: 1 of 4	
Client		Laboratory	: Environmental Division Newcastle	
Contact	: LARA NICHOLAS	Telephone	: +612 4014 2500	
Project	: WD4 PRIMULA AVE	Date Samples Received	: 19-Apr-2018	
Site	:	Issue Date	: 24-Apr-2018	
Sampler	: DANIEL RAYMOND	No. of samples received	: 2	
Order number	: 234215	No. of samples analysed	: 2	

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: AIR				Evaluation	: × = Holding time	e breach ; ✓ = With	n holding time.	
Method	Sample Date	E>	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP101: VOCs by USEPA Method TO15r								
Summa style Canister - ALS Supplied Silonite (EP101-H) 030418 - C4986_S2846	03-Apr-2018				23-Apr-2018	03-May-2018	✓	
Summa style Canister - ALS Supplied Silonite (EP101-H) 090418 - C12624_S2833	09-Apr-2018				23-Apr-2018	09-May-2018	~	
Sampling Quality Assurance								
Summa style Canister - ALS Supplied Silonite (CAN-001) 030418 - C4986_S2846	03-Apr-2018				20-Apr-2018	04-Apr-2019	✓	
Summa style Canister - ALS Supplied Silonite (CAN-001) 090418 - C12624_S2833	09-Apr-2018				20-Apr-2018	09-Apr-2019	✓	

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: AIR				Evaluation	n: × = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Duplicate Control Samples (DCS)							
Hydrocarbons in Air by USEPA TO15	EP101-H	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Duplicates (DUP)							
Hydrocarbons in Air by USEPA TO15	EP101-H	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Hydrocarbons in Air by USEPA TO15	EP101-H	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Hydrocarbons in Air by USEPA TO15	EP101-H	1	2	50.00	5.00	~	NEPM 2013 B3 & ALS QC Standard

Page	: 4 of 4
Work Order	: EN1802617
Client	: ECOTECH PTY LTD
Project	: WD4 PRIMULA AVE

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Canister Sampling - Field Data	CAN-001	AIR	In house: Referenced to USEPA TO14 / TO15
Hydrocarbons in Air by USEPA TO15	EP101-H	AIR	In house: Referenced to USEPA TO15r Volatile Organic Compounds in Air by USEPA TO15. Aliphatic and Aromatic Hydrocarbons
Hydrocarbons in Air by USEPA TO15 (mass/volume)	EP101-H-MV	AIR	In house: Referenced to USEPA TO15r Hydrocarbons in Air by USEPA TO15 (Calculated Concentration)

A			AIN OF CUSTODY f sourced from an ALS Laboratory: please tick →	QHOSLADE II ROMAR AN PHILS AND STREET E. ADA DERISEANE IEAN STREET FHILT CONTRACT SANDA DOWNERSTONE - COMPANY	belgeogintelor Sectord QLD At Is lositoredjals		Ph 67 # 1944#480 Ph 60 0	914 년71 3년 옥서 문 548 981	NAROUNA TEMNI CHINA CHINA CHINA NG E SUM	Kayiĝaio Nel ≈naŭ Ofterreti	grocal 29 Saven i Saven i	ي يون مرو 1944 - 194	1.3.8	24 - 03 4674 29 2003/84 - 441 20 - 03 4423 20	60.8 saat ¥6.08		$Q \in \mathbb{Z}^{n}(G)$	ан 01. Стома Ан 11.	.8. 275-289 400-000 Base Base Series 2886-2855 F. 2000-2000 5900-2500-4 191722-5-10 Series Series Series 2822-2620 E. 2000-2000-2000-2000-200 2822-2620 E. 2000-2000-2000-2000-2000-2000-2000-200	ភពអាំណា។ បើបើ 42:55 អន្លែមានរូបមានាយៈ។
(ALS)	l 		Client Supplied Canister(s)? Y / N	- Ptr 07 "4" - Eb(0 8. gades	eneőalagtetet e	aw	Ph C2 0	572 973	s si mub	gee maid	þa synn	a com	-	Ph. 69 (36) 71	eté (; kompais.p	ennel andreas so	σ	Mr. c.	alle 2122 di Woxing Iopit Angria	230 230 2402 1123 2002
CLIENT:	ECOTECH				TURNAR		UIREMENT	s :		Stand	ard TA	\⊤ (Lis	st due date):				LAB	ORATO	RY USE ONLY (Circle)	er to initial und datadam
OFFICE:	1492 Ferntree	Gully Rd, KNOXF	FIELD VIC			TAT may be ex analysis suites		ltiple		Non S	Standa	rd or u	irgent TAT (L	ist due date):		Cust	ody Seal Ir		
PROJEC	T: WD4 PRIM	ULA AVE			ALS QUO	DTE NO.: N	E/070/17							COC SEQU	ENCE NUMB	ER (Circle)	Valve Rece	is closed (ipt?	on Rec Lab Y / N NE	EY/N N/A
PURCHA	SE ORDER NO	234215			COUNTR	Y OF ORIG	IN:						coc:		34	56	7 Cani:	ster/Sampl	er Complete and Not Damage	nd Yes No
	T MANAGER:			COI	NTACT PH:	03 9370 78	45 041735	1053					OF:		3 4	5 6	7 Othe	roommen	Temperat	ture °C
SAMPLE			Daniel Raymond			BILE: 04194			REL	INQUI	SHED) BY:		RELINQUI	SHED BY:		RELINQU	ISHED B	Y: RELINQUIS	SHED BY:
	ailed to ALS? (-				(or default)							Signature and date/time	,		Signature and datestime			Signature and data/time	Signature and data/im
j			her addresses are listed): lara.nicholas@ecc ner addresses are listed): naomi.dans@eccte		nond@eco	lech.com			REG		DBY:	\$ 19	14/18	RECEIVED) BY:		RECEIVEI	D BY:	RECEIVED	BY:
}			· _								9	.20	Signature and detestime	,		Signature and datestime	$\frac{1}{11}$	RVC	Signature and classifiere	Signature and data/sim
	TS/SPECIAL P		ACEMENT OR RETURN INSTRUCTIONS:					-					,			10	<u> :</u>	•1/G	097811	
		GAS SAMP	LE CONTAINER INFORMAT				r Gauge res (PSI)	Refer COAs	to Canist for press	er Verifica aures mea	ation Rep asured by	orts and the Lab		ANAL	YSES R	EQUES	TED	_	Additional Inf	ormation
ALSUSEONLY			CANISTER / SAMPLE DETAILS			Pre-	Post	Re	portin	g Req	luirem	ents	Su	ite Codes n	nust be liste	ed to attract	suite price	}		
LABID	CANISTER SERIAL NO.	FLOW CONTROLLER SERIAL NO.	CLIENT SAMPLE ID	DATE / TIME SAMPLED	MATRIX (eg Air, Soll Gas)	Sampling	Sampling	Ambier Alr	LOR soll Ga	Other /	ppbv,	nits ppmv, mg/m ³	VI-V1 BTEXN						Comments on LORs required hazards, likely contaminant requiring specific QC analys routine method LOR and	levels, or samples is etc. (LOR defaults to
j	4986	2846	030418	03/04/18 00:30 - 23:30	AIR	32	5	x			x		x						There will be a break in s	ampling so
2	12624	2833	090418	09/04/18 00:30 - 23:30	AIR	30	3	x			x		x						this is the last round of sa	impling for
																			now. Please do not send	any more
								_					/						canisters but please send	samplers
																			back cleaned. Thanks	
													T							
			۰ ۸۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰									L		onment	al Divisi	ion	·			
									_			L	Newc Wol	rk Order I	Reference	•				
													E	N18	0261	17			:	
								1				Γ								
				··· -								+								1
								-				F								
															111					!
							}					Γ			r#16					
												t	Telephon	e:+61240	14 2500					
			· · · · · · · · · · · · · · · · · · ·						+			-]		-				
Job Spe	l cific Instructi	ons: Ecotech Ti	imers Sent with samples to be cleane	l d with nitrogen ar	nd returne	d with new	l / canisters	1	1				<u>I</u>	l]					
	ENFM (204A/2)						Form Page													

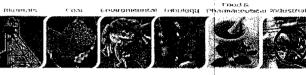
t

ARCAMPEING GOUPMENT A AND A SHE AND ADDISPANCES INCOMES

Inquiries: Client Services - Newcastle Phone: +61 (02) 4014 2500

E-mail: samples.newcastle@alsenviro.com

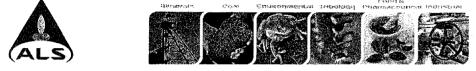
Client / Office:	ECOTECH	ALS Use ONLY
Contact:	Lara Nicholas	Request Received By: HW
Telephone:	03 9730 7800	Deliver By: asap
ALS Quotation:	NE/070/17	Dispatched By: asap
Delivery Address:	1492 Ferntree Gully Rd	Workorder:
	Knoxfield VIC 3180	Agreed Rent Free Period: 14 day


SPECIAL INSTRUCTIONS: PLEASE EMAIL CLEAN CERTIFICATES TO lara.nicholas@ecotech.com ON DISPATCH

Air Sampling Equipment Request

015243	ATACINET											
CA	NIST	ERS	na Tanan ang t		Halfe in	r in the			el, se mérica		nato (Å
		ister Type	CLEVIN CO.	Size	1					STATES PROPER IN CONTRACTOR	nalysis Initials & Di	500 Bay
7	101 M22 662	steral ype sature sature	(Summa™)	101Ze #*	Yes	s rexalv S	ee Cap	Rental ¹ \$200 ea	No Returned	Leak Checked	Certified O	7
6					163		105	\$200 ea	l	15	11 11 21	
CC	NNE	CTORS AND F	LOW CONT	ROL	DEVICI	ES						
01.2			Duration 2	low	T-140 A			Sealed /	Connection	No.	SAMO AS	<i>6</i>
No.	Eduib	ment/Type2	entre former and the second	ulmin)* Pi	ieces Gi	auges	Certified	Vacuum	C Q Quick Connec S Swagelok	166 m	Rental!	
2	Passi	ve Sampler -TWA	24hr	1	No Y	res	Yes	Yes / No	S		Inc! Above	
Ø	Flow	Sampler Caps		1	No I	No	No	Yes / No			\$20 ea. Replacement	
Ø		ECH Autosampler		1	No I	No	No	Yes / No			N/A	
3		vagelok connectors enules (spares)	-	-	•	-	-	-			\$5 ea. Replacement	
1	Other	(specify)	mfech	0~	nad	G	H1 a	e for	thou	antos	~ am	ما
			cofech + AC	<u> </u>	- /	$\frac{1}{2}$		5	The		<u>> p</u>	<u>-</u>
' Ref	er to Acc	eptance of Terms	+ 40	_ د	1-16	re	-6					
ALS	use only					2						1
		ide Included (Y / N)	Pacl	ked by:		S			Dispatch Time /		- 19	4
849 m. 24	ber of B	oxes: patcher:		<u> </u>	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100		nent Note I		EONOO9	76766	Z	_
Cou		patcher		NT	and the second sec	Consignr	nent Dispa	tched by:	1M	아이는 것 것같		
			•								i	
		1										
		- 										
		i f										
ENFM	ICDR1.1	11-05-11				FN	icił-i t	solut	ions			
,	Brisbane - A	delaide - Sendino - Canterra - G	iesioon - Gladstone - Melba	oune (Scoroob	vi - Meltourne	Sprinnwale	a - Nurlove - Ne	woastle - Nowra - P	erth - Wolfahonen - Swie	eu - Towaswile - Traralo	on - Wandar His	

. www.alsglobal.com



AIR SAMPLING EQUIPMENT DISPATCHARGORD

ALS SUPPLIED EQUIPMENT

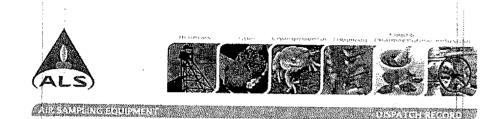
ltem	Quantity	item Description		Serial Nos	
	2	6L Silonite Summa™ canister	126 498	4) (* (*	4 1411 8
	2	Passive Sampler - TWA - 24hr 3-5 mGmm #4	128 28	33 ~	
FMCDR1.1 11-05-11	s. Gesting - Oldyrou -	F-88538-47 SCB8_13 Melbourne (Scoreiby) - Melbourne (Spanguate) - Mudgee - Neucaute - Nov	T 1€3 K 3 5 2 - Petth - Welkengong - 5yd		

AIR SAMPLING FOURMENT

	2012 (A. 197
Acceptance of Terms:	
Acceptance and use of the accompanying ALS Am Sampling Edupment constitutes acceptan	ce of the
Follow rightering	
The This equipment demans the property of AUS Laboratory Group 199	
2. Subject to cheracinomicons below and unless stated otherwise in the relevant quotation at	
 and use of unstead indicate is included the price of analysis 	C DOD NIN
3 - Not esponsibility-is accepted by Al⊆ for equipment requirements, that there been inter	Contraction or
averancempletely specified by the client interracing of AtS security ment. with other	
equipment of structures is solely the Great stresponsibility (194) and a second with the second structure of the	
. A same indication mentals contracted and supplied based on client specified requirements	ALS WILL
8.2 stake valuereas on able scare, no smelles these specifications = bline will shot accept nesponsi- tion of the second s second second se Second second s	bility fors.
 Changes in equipment early allow on failures during mansus a Replacement equipment 	tewill be
tplicylide drawio enarge inneguneden all	
5 Equiption calibration and varification records are available for review on request. TVe	rification !
en reports are provided with ectionment and electronic copies are available on request.	
to's Thisy any sampling requirement, is provided isolely, for other useriol, the mominate	
2. Responsibility that environments equipment textor at page 6 and terment in a drive and terment in a drive and the requirement of the response of the res	omentetoa
7. Unless otherwise agreed in writing, if equipment is not returned within the agreed period after dispatch, the quoted rental fees above will apply per week per unit the	
equipment is returned unused, the cleaning fees quoted will apply (1 weeks rental cl	
sampling equipment return is delayed, please contact the laboratory prior to expiry of	
free period to negotiate and extension.	
48. A reparably damaged equipment and any equipment not neturned within 40 days will be	
se stouinere lent at a replacement, cost per unit equalito 15, weeks rentaless rental costs alle	ady paid.
292. Ceaningroosis will amin for equiniment marked of defaced by the client. Please at acht	abels for

If these conditions are not acceptable please return all equipment to ALS Newcastle immediately.

EQUIPMENT SUPPLY AND LOGISTICS


Additional air sampling equipment can be ordered through any ALS Environmental Laboratory and supplied direct to your site or office by courier. For the fastest turnaround, equipment should be returned direct to Newcastle Laboratory.

ALS Environmental, Newcastle 5/585 Maitland Road Mayfield West, NSW 2304

Note that Dangerous Goods Transport Regulations may apply after sampling if the air cylinders are pressurised or contain hazardous materials.

RIGHT SOLUTIONS astie - Mowra - Porth - Wollongoog - Sydney - Townsville - Traca

 Bendigo - Canberre MARTIN CONTRACTO

Inquiries: Client Services - Newcastle Phone: +61 (02) 4014 2500 E-mail: samples.newcastle@alsenviro.com

Dispatch to:				
Client / Office:	ECOTECH	ALS Use ONLY	·····	1
Contact:	Lara Nicholas	Request Received By:	HW	
Telephone:	03 9730 7800	Deliver By:	asap	1
ALS Quotation:	NE/070/17	Dispatched By:	asap	֠
Delivery Address:	1492 Ferntree Gully Rd	Workorder:	p	
	Knoxfield VIC 3180	Agreed Rent Free Period:	14	days

SPECIAL INSTRUCTIONS: PLEASE EMAIL CLEAN CERTIFICATES TO lara.nicholas@ecotech.com ON DISPATCH

Air Sampling Equipment Request

Sec.

Leak Checked

Certified OK

CANISTERS

No. Canister Type	Size	Gauge	Valvo	Cap	Rental	Sec
Entech Silonite Canister (Summa TM)	6L	Yes	\$	Yes	\$200 ea	

CONNECTORS AND FLOW CONTROL DEVICES

No Equipment Type	Duration (Pri)	Flow	Piece	Gauge	Certified	Sealed / Vacuum	Connection Q Outer Connect Strangelok	tu. Retarant	Rental
2 Passive Sampler-TV	VA 24hr		No	Yes	Yes	Yas / Na	S		Incl Above
4 Flow Sampler Caps		1	No	No	No	Yes/No			\$20 ea.
2 ECOTECH Autosam	1		No	No	No	Yes/No			Rectapsover N/A
5 2" Swagelok connect and ferrules (spares)		-	-	-	•	-			S5 ca.
Other (specify)		nea	2						
* Refer in Acceptance of Terms									
ALS use only					/				
Sampling Guide Included (Y /	'N)	Packed by	<i>c</i>	نو	8	r	lispatch Time / Da	- 2-	PIZE
Number of Boxes:		[Consig	mment Note h		ECN009-		87
Courier// Dispatcher:		Tim		Consig	nment Dispal	ched by:	AM		1
							/		
ENFMCD81.1 11-05-13		Ma				531.1.7:			
		8.635 (NorMark)	-	INTARIAR TAR	alsoms.	Harre Komanita	n anterna indre. 1		··· • • • • • • • • • • • • • • • • • •

State (Dist:/ Sec.

510].ip

ALS SUPPLIED EQUIPMENT

(tem	Quantity	Item Description		Serial Nos	
	2	6L Silonite Summa ^{тµ} canister	473	9. 29 / P	id 114 HJ
	2	Passive Sampler - TWA - 24hr 3 - SmL/ MM #G	283 28	37 49	
				· · · ·	-
ENFACORIA 11-06-11	hit vie naturtante M	FRENCH SCHLE	E LETET S		-
		www.alsoloban.com	and the second second second	Contract Charger 4	

Passes and and a Endersmental

Ganister Ventreation Report

Canister No:

4986

Specified Purpose:	USEPA TO15 (Extended Suite) Ambient Air	Verification Date: Valid To (At least): Verification File:	09-Mar-2018 06-Apr-2018 180309_11.D
Canister Type:	Entech Silonite - Summa Style	Last Stability Check:	08-Sep-2016
Canister Size:	6L	Next Check Scheduled:	08-Sep-2018
Valve Type:	Nupro	Analyst:	K. Gelderman
Dispatch Pressure:	<0.01 psia	Approved for Dispatch by:	K. Gelderman

Cariste stars serviced fit for purpose field the sequenced enables, and applications of knows, sites meet applications can be used as send which was appropriately to the requirements of USEPA (method TOTS).

Sach verification medien a street for contain matter, traks and domage to server, statistic creates are performed after 3 Gears on it domage with each user in a consistent offen each way sears, within the decapated induction much then successor Sanister is coparised bording, the target contaction without significant decreation.

			Verification	
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result
			ppbv	ppbv
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform		0.2	<0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride		0.2	<0.2
1,1,2-Trichloroethane	Vinyl trichloride		0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride		0.2	<0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride		0.2	<0.2
1,2-Dichloroethane	Ethylene chloride		0.2	<0.2
1,2,4-Trimethylbenzene	Pseudocumene		0.2	<0.2
1,2-Dibromoethane	EDB / Ethylene dibromide		0.2	<0.2
1,2-Dichlorobenzene	o-Dichlorobenzene		0.2	<0.2
1,2-Dichloropropane	Propylene dichloride		0.2	<0.2
1,3,5-Trimethylbenzene	Mesitylene		0.2	<0.2
1,3-Dichlorobenzene	m-Dichlorobenzene		0.2	<0.2
1,4-Dichlorobenzene	p-Dichlorobenzene		0.2	<0.2
Benzene	Cyclohexatriene		0.2	<0.2
Bromomethane	Methyl bromide		0.2	<0.2
Tetrachloromethane	Carbon tetrachloride		0.2	<0.2
Chlorobenzene	Phenyl chloride		0.2	<0.2
Chloroethane	Ethyl chloride		0.2	<0.2
Chloroform	Trichloromethane		0.2	<0.2
Chloromethane	Methyl chloride		0.2	<0.2
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene		0.2	<0.2
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene		0.2	<0.2
Ethylbenzene	Phenyl ethane		0.2	<0.2
Freon 12	Dichlorodifluoromethane		0.2	<0.2
⇒on 11	Trichlorofluoromethane		0.2	<0.2
Sereon 113	1,1,2-Trichloro-1,2,2-trifluoroethane		0.2	<0.2
Freon 114	1,2-Dichlorotetrafluoroethane		0.2	<0.2
Hexachlorobutadiene	Hexachloro-1,3-Butadiene		0.2	<0.2

Qualifiers - F: Fails Stability Check, V: Fails Verification

Adelaide - Bendigo - Canberra

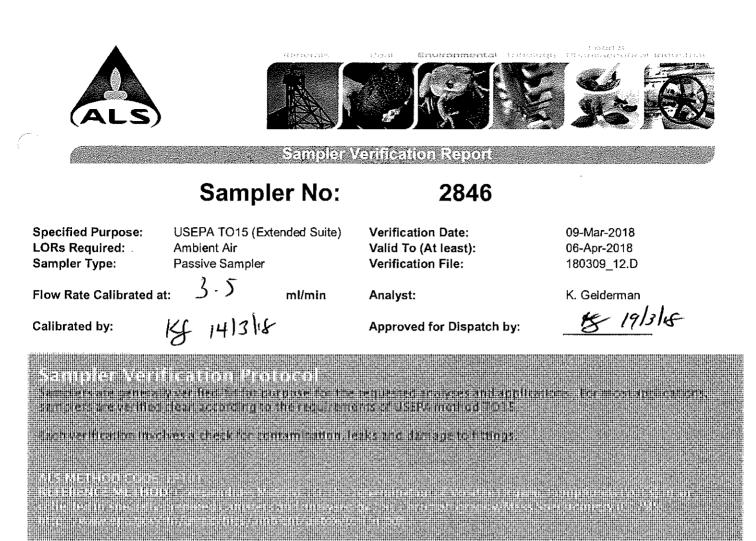
HOHT SOLLTIONS PROPERTIES

Pertis

Newcastle - Nowral

(Scoresb

Testeve a court


Equipmental ()

			Verification	
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result
· · · · · · · · · · · · · · · · · · ·			ppbv	ppbv
Dichloromethane	Methylene chloride		0.2	<0.2
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene		0.4	<0.4
o-Xylene	1,2-Dimethylbenzene		0.2	<0.2
Styrene	Vinyl benzene		0.2	<0.2
Tetrachloroethene	PCE / Perchlorethylene		0.2	<0.2
Toluene	Methyl Benzene		0.2	<0.2
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene		0.2	<0.2
Trichloroethene	TCE / Trichloroethylene		0.2	<0.2
Vinyl chloride	Chloroethene		0.2	<0.2
1,2,4-Trichlorobenzene			0.2	<0.2
1,3-Butadiene	Biethylene		0.2	<0.2
1,4-Dioxane	p-Dioxane		0.2	<0.2
2,2,4-Trimethylpentane	Isooctane		0.2	<0.2
4-Ethyltoluene	p-Ethyltoluene		0.2	<0.2
Acetone	2-Propanone		0.2	<0.2
Allyl chloride	3-Chloropropene		0.2	<0.2
Bromodichloromethane	Dichlorobromomethane		0.2	<0.2
Bromoform	Tribromomethane		0.2	< 0.2
Carbon disulfide	CS2		0.2	<0.2
Cyclohexane			0.2	<0.2
Dibromochloromethane	Chlorodibromoethane		0.2	<0.2
Ethyl acetate	Acetic ester		0.2	<0.2
Isopropyl alcohol	Isopropanol / 2-Propanol		0.2	<0.2
Methyl butyl ketone	MBK / 2-Hexanone		0.2	<0.2
Methyl ethyl ketone	MEK / 2-Butanone		0.2	<0.2
Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone		0.2	<0.2
Methyl tert-butyl ether	МТВЕ		0.2	<0.2
n-Heptane			0.2	<0.2
n-Hexane			0.2	<0.2
Propene	Propylene		0.2	<0.2
Tetrahydrofuran	THF		0.2	<0.2
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene		0.2	<0.2
Vinyl acetate	Acetic acid vinyl ester		0.2	<0.2
Bromoethene	Vinyl bromide		0.2	<0.2
Benzyl chloride	a-Chlorotoluene		0.2	<0.2
Ethanol	Ethyl alcohol		0.2	<0.2
Acetonitrile	Methyl cyanide		0.2	<0.2
Acrolein	2-Propenal		0.2	<0.2
Acrylonitrile	2-Propenenitrile		0.2	<0.2
tert-Butyl alcohol	TBA		0.2	<0.2
2-Chloroprene	2-Chloro-1,3-butadiene		0.2	<0.2
Diisopropyl Ether	DIPE		0.2	<0.2
Ethyl tert-butyl ether	ETBE		0.2	<0.2
tert-Amyl methyl ether	TAME		0.2	<0.2
Methyl methacrylate	MMA		0.2	<0.2
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride		0.2	<0.2
Isopropylbenzene	Cumene		0.2	<0.2
2-Chlorotoluene	o-Chlorotoluene		0.2	<0.2
n-Propylbenzene	Phenyl propane		0.2	<0.2
tert-Butylbenzene	1,1-Dimethylethylbenzene		0.2	<0.2
sec-Butylbenzene	1-Methylpropylbenzene		0.2	<0.2
2-Isopropyltoluene	o-Cymene		0.2	<0.2
n-Butylbenzene	Phenyl butane		0.2	<0.2

PIGHT SOLUTIONS CONTRACTOR OF SOLUTIONS

1.1. 1

Verified to **Target Compound** Alt. Name Result ppbv ppbv 1,1,1-Trichloroethane 1,1,1-TCA / Methyl chloroform 0.2 < 0.2 < 0.2 1,1,2,2-Tetrachloroethane R-130 / Acetylene tetrachloride 0.2 Vinyl trichloride 0.2 < 0.2 1,1,2-Trichloroethane 1.1-Dichloroethane Ethylidene chloride 0.2 < 0.2 1.1-Dichloroethene 1,1-DCE / Vinylidene chloride 0.2 < 0.2 1.2-Dichloroethane Ethylene chloride 0.2 < 0.2 < 0.2 1,2,4-Trimethylbenzene Pseudocumene 0.2 1,2-Dibromoethane EDB / Ethylene dibromide 0.2 <0.2 1,2-Dichlorobenzene o-Dichlorobenzene 0.2 < 0.2 1,2-Dichloropropane Propylene dichloride 0.2 < 0.2 1,3,5-Trimethylbenzene Mesitylene 0.2 < 0.2 1,3-Dichlorobenzene m-Dichlorobenzene 0.2 < 0.2 1,4-Dichlorobenzene p-Dichlorobenzene 0.2 <0.2 < 0.2 Benzene Cyclohexatriene 0.2 Bromomethane Methyl bromide 0.2 <0.2 Tetrachloromethane <0.2 Carbon tetrachloride 0.2 Chlorobenzene 0.2 <0.2 Phenyl chloride <0.2 Chloroethane Ethyl chloride 0.2 Chloroform 0.2 <0.2 Trichloromethane Chloromethane Methyl chloride 0.2 <0.2 cis-1,2-Dichloroethene cis-1,2-Dichloroethylene 0.2 <0.2 cis-1,3-Dichloropropene cis-1,3-Dichloropropylene 0.2 <0.2 <0.2 "thylbenzene" Phenyl ethane 0.2 7eon 12 Dichlorodifluoromethane 0.2 <0.2 Freon 11 Trichlorofluoromethane 0.2 <0.2 Freon 113 1,1,2-Trichloro-1,1,2-trifluoroethane 0.2 <0.2 Freon 114 1,2-Dichlorotetrafluoroethane 0.2 < 0.2 Hexachlorobutadiene Hexachloro-1,3-Butadiene 0.2 < 0.2

FIGHT SOLLIVOTS FORMER FOR FERE

Brisbane - Adelaide - Bendigo - Canberra - Geelong - Cladstone - Melbourne (Scoresby) - Melbourne (Springvale) - Mudgee - Newcastle - Novra - Perth - Wollongong - Sydney - Townsville - Traralgon - Wangaratra

Barran (....) **Crusonmenta** betregg respect have as

Target Compound	Alt. Name	Verified to	Result
		ppbv	ppbv
Dichloromethane	Methylene chloride	0.2	<0.2
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene	0.4	<0.4
o-Xylene	1,2-Dimethylbenzene	0.2	<0.2
Styrene	Vinyl benzene	0.2	<0.2
Tetrachloroethene	PCE / Perchlorethylene	0.2	<0.2
Toluene	Methyl Benzene	0.2	<0.2
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene	0.2	<0.2
Trichloroethene	TCE / Trichloroethylene	0.2	<0.2
Vinyl chloride	Chloroethene	0.2	<0.2
1,2,4-Trichlorobenzene		0.2	<0.2
1,3-Butadiene	Biethylene	0.2	<0.2
1,4-Dioxane	p-Dioxane	0.2	<0.2
2,2,4-Trimethylpentane	Isooctane	0.2	<0.2
4-Ethyltoluene	p-Ethyltoluene	0.2	<0.2
Acetone	2-Propanone	0.2	<0.2
Allyl chloride	3-Chloropropene	0.2	<0.2
Bromodichloromethane	Dichlorobromomethane	0.2	<0.2
Bromoform	Tribromomethane	0.2	<0.2
Carbon disulfide	CS2	0.2	<0.2
Cyclohexane		0.2	<0.2
Dibromochloromethane	Chlorodibromoethane	0.2	<0.2
Ethyl acetate	Acetic ester	0.2	<0.2
Isopropyl alcohol	Isopropanol / 2-Propanol	0.2	<0.2
Methyl butyl ketone	MBK / 2-Hexanone	0.2	<0.2
Methyl ethyl ketone	MEK / 2-Butanone	0.2	<0.2
Methyl isobutyl ketone	MIBK / 4-Methyl-2-pentanone	0.2	<0.2
Methyl tert-butyl ether	MTBE	0.2	<0.2
n-Heptane		0.2	<0.2
n-Hexane		0.2	<0.2
Propene	Propylene	0.2	<0.2
Tetrahydrofuran	THF	0.2	<0.2
trans-1,2-Dichloroethene	trans-1,2-Dichloroethylene	0.2	<0.2
Vinyl acetate	Acetic acid vinyl ester	0.2	<0.2
Bromoethene	Vinyl bromide	0.2	<0.2
Benzyl chloride	o-Chlorotoluene	. 0.2	<0.2
Ethanol	Ethyl alcohol	0.2	<0.2
Acetonitrile	Methyl cyanide	0.2	<0.2
Acrolein	2-Propenal	0.2	<0.2
Acrylonitrile	2-Propenenitrile	0.2	<0.2
tert-Butyl alcohol	TBA	0.2	<0.2
2-Chloroprene	2-Chloro-1,3-butadiene	0.2	<0.2
Diisopropyl Ether	DIPE	0.2	<0.2
Ethyl tert-butyl ether	ETBE	0.2	<0.2 <0.2
tert-Amyl methyl ether	TAME	0.2	<0.2 <0.2
Methyl methacrylate	MMA	0.2	<0.2 <0.2
1,1,1,2-Tetrachloroethane		0.2	<0.2 <0.2
	R-130a / Acetylene trichloride		
Isopropylbenzene 2-Chlorotoluene		0.2	<0.2
	o-Chlorotoluene	0.2	<0.2
n-Propylbenzene tert-Butylbenzene	Phenyl propane	0.2	<0.2
tert-Butylbenzene	1,1-Dimethylethylbenzene	0.2	<0.2
sec-Butylbenzene	1-Methylpropylbenzene	0.2	<0.2
2-Isopropyltoluene	o-Cymene	0.2	<0.2
n-Butylbenzene Naphthalene	Phenyl butane	0.2 0.2	<0.2 <0.2

HIGHT SOLUTIONS Inventions and the

Ĭ,

an www.walkqidobalkoom

Environmental

Camister Vertification Report

Canister No:

12624

Specified Purpose:	USEPA TO15 (Extended Suite) Ambient Air	Verification Date: Valid To (At least): Verification File:	22-Mar-2018 19-Apr-2018 180322B_02.D
Canister Type:	Entech Silonite - Summa Style	Last Stability Check:	19-Aug-2016
Canister Size:	6L	Next Check Scheduled:	19-Aug-2018
Valve Type:	TOV	Analyst:	K. Gelderman
Dispatch Pressure:	<0.01 psia	Approved for Dispatch by:	K. Gelderman <u>VS 27/3</u> 18

Canister Verification Protocol Canister active freq fit to purpose for the inclusion and season descriptions of enderti-canister are enflored an according to the according to \$1500 method \$215. 111 44.14 ang kantasan

Each ser Deaton interves a chaes for contamination, saws and damage to saling, stability chaess are performed after sears on if damage to the carister in suspected, then every two years, within the designated to hitro roment ensure en amateris recallent instangene target chemicals without significant segradation.

			Verification	
Target Compound	Alt. Name	Qualifiers	Goal (<)	Result
Target Compound	All Name	Quainers	ppbv	ppbv
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform		0.2	۹0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride		0.2	<0.2
1,1,2-Trichloroethane	Vinyl trichloride		0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride		0.2	<0.2
1.1-Dichloroethene	1,1-DCE / Vinylidene chloride		0.2	<0.2
1,2-Dichloroethane	Ethylene chloride		0.2	<0.2
1,2,4-Trimethylbenzene	Pseudocumene		0.2	<0.2
1.2-Dibromoethane	EDB / Ethylene dibromide		0.2	<0.2
1,2-Dichlorobenzene	o-Dichlorobenzene		0.2	<0.2
1,2-Dichloropropane	Propylene dichloride		0.2	<0.2
1,3,5-Trimethylbenzene	Mesitylene		0.2	<0.2 <0.2
1,3-Dichlorobenzene	m-Dichlorobenzene		0.2	<0.2
1,4-Dichlorobenzene	p-Dichlorobenzene		0.2	<0.2
Benzene	Cyclohexatriene		0.2	<0.2
Bromomethane	Methyl bromide		0.2	<0.2 <0.2
Tetrachloromethane	Carbon tetrachloride		0.2	<0.2
Chlorobenzene			0.2	<0.2 <0.2
Chloroethane	Phenyl chloride		-	
Chloroform	Ethyl chloride Trichloromethane		0.2	<0.2
Chloromethane			0.2 0.2	<0.2
	Methyl chloride			<0.2
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene		0.2	<0.2
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene		0.2	<0.2
Ethylbenzene	Phenyl ethane		0.2	<0.2
Freon 12	Dichlorodifluoromethane		0.2	<0.2
()0n 11	Trichlorofluoromethane		0.2	<0.2
Serieon 113	1,1,2-Trichloro-1,2,2-trifluoroethane		0.2	<0.2
Freon 114	1,2-Dichlorotetrafluoroethane		0.2	<0.2
Hexachlorobutadiene	Hexachloro-1,3-Butadiene		0.2	<0.2

Qualifiers - F: Fails Stability Check, V: Fails Verification

Brisbane - Adelaide - Bendiso - Canberra

Geelong

9-24 (.e i - i - i - i SOLUTIONS

Tratalogi

Wano

等于某人的人民 化氯化合物

Enterterential (contractor) from the

			Verification		
Target Compound	Alt. Name	Qualifiers			
, algot competitio		quamero	ppbv	Result ppbv	
Dichloromethane	Methylene chloride		0.2	<0.2	
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene		0.4	<0.4	
o-Xylene	1,2-Dimethylbenzene		0.2	<0.2	
Styrene	Vinyl benzene		0.2	<0.2	
Tetrachloroethene	PCE / Perchlorethylene		0.2	<0.2	
Toluene	Methyl Benzene		0.2	<0.2	
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene		0.2	<0.2	
Trichloroethene	TCE / Trichloroethylene		0.2	<0.2	
Vinyl chloride	Chloroethene		0.2	<0.2	
1,2,4-Trichlorobenzene			0.2	<0.2	
1,3-Butadiene	Biethylene		0.2	<0.2	
1,4-Dioxane	p-Dioxane		0.2	<0.2	
2,2,4-Trimethylpentane	Isooctane		0.2	<0.2	
4-Ethyltoluene	p-Ethyltoluene		0.2	<0.2	
Acetone	2-Propanone		0.2	<0.2	
Allyl chloride	3-Chloropropene		0.2	<0.2	
Bromodichloromethane	Dichlorobromomethane		0.2	<0.2	
Bromoform	Tribromomethane		0.2	<0.2	
Carbon disulfide	CS2		0.2	<0.2	
Cyclohexane	662		0.2	<0.2	
Dibromochloromethane	Chlorodibromoethane		0.2	<0.2	
Ethyl acetate	Acetic ester		0.2	<0.2	
Isopropyl alcohol					
Methyl butyl ketone	isopropanol / 2-Propanol MBK / 2-Hexanone		0.2	< 0.2	
Methyl ethyl ketone	MEK / 2-Nexanone MEK / 2-Butanone		0.2 0.2	<0.2	
Methyl isobutyl ketone				<0.2	
• •	MIBK / 4-Methyl-2-pentanone MTBE		0.2	<0.2	
Methyl tert-butyl ether	WIDE		0.2	< 0.2	
n-Heptane n-Hexane			0.2	< 0.2	
	Dreeviers		0.2	<0.2	
Propene Tetrahydrofuran	Propylene THF		0.2	< 0.2	
trans-1,2-Dichloroethene			0.2	<0.2	
Vinyl acetate	trans-1,2-Dichloroethylene		0.2	< 0.2	
Bromoethene	Acetic acid vinyl ester		0.2	< 0.2	
			0.2	<0.2	
Benzyl chloride	a-Chlorotoluene		0.2	<0.2	
Ethanol A setesite	Ethyl alcohol		0.2	<0.2	
	Methyl cyanide		0.2	<0.2	
Acrolein	2-Propenal		0.2	<0.2	
Acrylonitrile	2-Propenenitrile		0.2	<0.2	
tert-Butyl alcohol	TBA		0.2	<0.2	
2-Chloroprene	2-Chloro-1,3-butadiene		0.2	<0.2	
Diisopropyl Ether	DIPE		0.2	<0.2	
Ethyl tert-butyl ether	ETBE		0.2	<0.2	
tert-Amyl methyl ether	TAME		0.2	<0.2	
Methyl methacrylate	MMA		0.2	<0.2	
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride		0.2	<0.2	
Isopropylbenzene	Cumene		0.2	<0.2	
2-Chiorotoluene	o-Chlorotoluene		0.2	<0.2	
n-Propylbenzene	Phenyl propane		0.2	<0.2	
tert-Butylbenzene	1,1-Dimethylethylbenzene		0.2	<0.2	
sec-Butylbenzene	1-Methylpropylbenzene		0.2	<0.2	
2-Isopropyltoluene	o-Cymene		0.2	<0.2	
n-Butylbenzene	Phenyl butane		0.2	<0.2	
Naphthalene			0.2	<0.2	

1. 1. 1

Erizbane - Adelaide - Bendigo - Canberra - Geelong - Gladstone - Melbourne (Scoresby) - Melbourne (Springvale) - Mudgee - Newcastic - Novra - Perth - Wollongong - Sydnay - Townsville - Tranalgon - Wangaratta

ALS)	duravan.	Contraction Report	Stand S Bandomanan Districture Stand Stand Stand Stand Stand Stand Stand Stand Stand Stand Stan Stand Stand
Samp	ler No:	2833	
Specified Purpose: USEPA TO15 (E LORs Required: Ambient Air Sampler Type: Passive Sample		Verification Date: Valid To (At least): Verification File:	09-Mar-2018 06-Apr-2018 180309_11.D
Flow Rate Calibrated at: 3-5	ml/min	Analyst:	K. Gelderman
Calibrated by: 141	z)&	Approved for Dispatch by:	13/19/3/18
Sampler Verification Pr Samples are acally vertex hitter samples are vertex vertex back of a Each and call on receiver a concerne	an part firsta Gitter	entral Colonia area (COLS.	anna - Ann Annal, agus carthanna -

(

740 (also for our second for a second for a second se

Target Compound	Alt. Name	Verified to ppbv	Result ppbv
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform	0.2	<0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride	0.2	<0.2
1,1,2-Trichloroethane	Vinyl trichloride	0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride	0.2	<0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride	0.2	<0.2
1,2-Dichloroethane	Ethylene chloride	0.2	<0.2
1,2,4-Trimethylbenzene	Pseudocumene	0.2	<0.2
1,2-Dibromoethane	EDB / Ethylene dibromide	0.2	<0.2
1,2-Dichlorobenzene	o-Dichlorobenzene	0.2	<0.2
1,2-Dichloropropane	Propylene dichloride	0.2	<0.2
1,3,5-Trimethylbenzene	Mesitylene	0.2	<0.2
1,3-Dichlorobenzene	m-Dichlorobenzene	0.2	<0.2
1,4-Dichlorobenzene	p-Dichlorobenzene	0.2	<0.2
Benzene	Cyclohexatriene	0.2	<0.2
Bromomethane	Methyl bromide	0.2	<0.2
Tetrachloromethane	Carbon tetrachloride	0.2	<0.2
Chlorobenzene	Phenyl chloride	0.2	<0.2
Chloroethane	Ethyl chloride	0.2	<0.2
Chloroform	Trichloromethane	0.2	<0.2
Chloromethane	Methyl chloride	0.2	<0.2
cis-1,2-Dichloroethene	cis-1,2-Dichloroethylene	0.2	<0.2
cis-1,3-Dichloropropene	cis-1,3-Dichloropropylene	0.2	<0.2
Thylbenzene	Phenyl ethane	0.2	<0.2
	Dichlorodifluoromethane	0.2	<0.2
Freon 11	Trichlorofluoromethane	0.2	<0.2
Freon 113	1,1,2-Trichloro-1,1,2-trifluoroethane	0.2	<0.2
Freon 114	1.2-Dichlorotetrafluoroethane	0.2	<0.2
Hexachlorobutadiene	Hexachloro-1,3-Butadiene	0.2	<0.2
		n an	경기가 감독 등의 원이

RIGHT SOLUTIONS FORMET FORMER

idigo - Camberra - Geelong - Gladstone - Melbourne (Scoresby) - Melbourne (Springvale) -Mudgee - Newcastle - Nowra - Perth - Wollongong - Sydney - Townsville - Tratalgon - Wangaratta - Adelaide - Ser

www.alsglobal.com

Target Compound	Alt. Name	Verified to	Resul
		ppbv	ppbv
Dichloromethane	Methylene chloride	0.2	<0.2
m -& p-Xylene	1,3 & 1,4 -Dimethylbenzene	0.4	<0.4
o-Xylene	1,2-Dimethylbenzene	0.2	<0.2
Styrene	Vinyl benzene	0.2	<0.2
Tetrachloroethene	PCE / Perchlarethylene	0.2	<0.2
Toluene	Methyl Benzene	0.2	<0.2
trans-1,3-Dichloropropene	trans-1,3-Dichloropropylene	0.2	<0.2
Trichloroethene	TCE / Trichloroethylene	0.2	<0.2
Vinyl chloride	Chloroethene	0.2	<0.2
1,2,4-Trichlorobenzene		0.2	<0.2
1,3-Butadiene	Biethylene	0.2	<0.2
1,4-Dioxane	p-Dioxane	0.2	<0.2
2,2,4-Trimethylpentane	Isooctane	0.2	<0.2
4-Ethyltoluene	p-Ethyltoluene	0.2	<0.2
Acetone	2-Propanone	0.2	<0.2
Allyl chloride	3-Chloropropene	0.2	<0.2
Bromodichloromethane	Dichlorobromomethane	0.2	<0.2
Bromoform	Tribramomethane	0.2	<0.2
Carbon disulfide	CS2	0.2	<0.2
Cyclohexane		0.2	<0.2
Dibromochloromethane	Chlorodibromoethane	0.2	<0.2
Ethyl acetate	Acetic ester	0.2	<0.2
sopropyl alcohol	Isopropanol / 2-Propanol	0.2	<0.2
Methyl butyl ketone	MBK / 2-Hexanone	0.2	<0.2
Methyl ethyl ketone	MEK / 2-Butanone	0.2	<0.2
Methyl isobutyl ketone	MBK / 4-Methyl-2-pentanone	0.2	<0.2
Methyl tert-butyl ether	MTBE	0.2	<0.2
n-Heptane	WIDE	0.2	<0.2
n-Hexane		0.2	
	Dranidana	0.2	<0.2
	Propylene		<0.2
Tetrahydrofuran	THF	0.2	<0.2
rans-1,2-Dichloroethene	trans-1,2-Dichloroethylene	0.2	<0.2
Vinyl acetate	Acetic acid vinyl ester	0.2	<0.2
Bromoethene	Vinyl bromide	0.2	<0.2
Benzyl chloride	a-Chlorotoluene	0.2	<0.2
Ethanol	Ethyl alcohol	0.2	<0.2
Acetonitrile	Methyl cyanide	0.2	<0.2
Acrolein	2-Propenal	0.2	<0.2
Acrylonitrile	2-Propenenitrile	0.2	<0.2
ert-Butyl alcohol	ТВА	0.2	<0.2
2-Chloroprene	2-Chloro-1,3-butadiene	0.2	<0.2
Diisopropyl Ether	DIPE	0.2	<0.2
Ethyl tert-butyl ether	ETBE	0.2	<0.2
ert-Amyl methyl ether	TAME	0.2	<0.2
Methyl methacrylate	MMA	0.2	<0.2
1,1,1,2-Tetrachloroethane	R-130a / Acetylene trichloride	0.2	<0.2
sopropylbenzene	Cumene	0.2	<0.2
2-Chlorotoluene	o-Chlorotoluene	0.2	<0.2
1-Propylbenzene	Phenyl propane	0.2	<0.2
ert-Butylbenzene	1,1-Dimethylethylbenzene	0.2	<0.2
-		0.2	
sec-Butylbenzene	1-Methylpropylbenzene		<0.2
2-Isopropyltoluene	o-Cymene	0.2	<0.2
n-Butylbenzene	Phenyl butane	0.2	<0.2
Naphthalene		0.2	<0.2

www.alsglobal.com